My Profile

Search abstracts

Lewis Sheiner


2020
Ljubljana, Slovenia



2019
Stockholm, Sweden

2018
Montreux, Switzerland

2017
Budapest, Hungary

2016
Lisboa, Portugal

2015
Hersonissos, Crete, Greece

2014
Alicante, Spain

2013
Glasgow, Scotland

2012
Venice, Italy

2011
Athens, Greece

2010
Berlin, Germany

2009
St. Petersburg, Russia

2008
Marseille, France

2007
København, Denmark

2006
Brugge/Bruges, Belgium

2005
Pamplona, Spain

2004
Uppsala, Sweden

2003
Verona, Italy

2002
Paris, France

2001
Basel, Switzerland

2000
Salamanca, Spain

1999
Saintes, France

1998
Wuppertal, Germany

1997
Glasgow, Scotland

1996
Sandwich, UK

1995
Frankfurt, Germany

1994
Greenford, UK

1993
Paris, France

1992
Basel, Switzerland



Printable version

PAGE. Abstracts of the Annual Meeting of the Population Approach Group in Europe.
ISSN 1871-6032

Reference:
PAGE 27 (2018) Abstr 8795 [www.page-meeting.org/?abstract=8795]


PDF poster/presentation:
Click to open Click to open

Oral: Dose individualisation – focus on biomarkers


B-04 Catherine Sherwin Model-based Dose Individualization Approaches Using Biomarkers

Venkata Yellepeddi, Catherine M. Sherwin

Division of Clinical Pharmacology, Department of Paediatrics, University of Utah

Objectives: This presentation aims at describing how modeling framework incorporating biomarker data can be a valuable tool for dose individualization in various diseases. Information on specific models of drugs such as sunitinib, warfarin, sitagliptin, etc. with corresponding biomarker data will be discussed in detail.      

Overview/Description of presentation: Biomarkers are helpful in clinical practice as a diagnostic tool, surrogate endpoint to assess clinical safety and efficacy, and for dose individualization. By incorporating complete time-course of biomarker changes in a model, we can quantitatively characterize the link between exposure, biomarker concentrations, and clinical outcome. An established relationship, therefore, may be used for prediction of changes in biomarker concentration and the resulting clinical outcome under a variety of conditions to evaluate individualized dosing approaches. Several examples are available on how model-based analyses of biomarker data can support the dose individualization approach in various disease states. A model relating exposure of anticancer drug sunitinib, biomarkers (vascular endothelial growth factor (VEGF), soluble vascular endothelial growth factor receptor (sVEGFR)‐2, ‐3, soluble stem cell factor receptor (sKIT)), and tumor growth to overall survival (OS) was developed to be used for dose individualization to maximize OS [1]. A KPD model that describes the relationship between warfarin dose and international normalized ratio (INR) response was developed. The model can be used to manage a priori and a posteriori individualization of warfarin therapy in both adults and children [2]. Prostaglandin E2 (PGE2) levels and thromboxane A2 (TXA2) inhibition were utilized as biomarkers for developing a model to predict drug effects and select efficacious doses in humans [3]. The key steps in the development of a model incorporating biomarkers are: 1) Development of a population model that describes the PKPD relationship of the drug and identify and quantify important predictors for a priori dose individualization 2) Transfer the model to a user-friendly decision support tool for a priori and a posteriori predictions of drug dose and biomarkers response 3) Optimize performance of model using clinical data.

Conclusions/Take home message: The models discussed in the presentation serve as examples of how pharmacometrics can be used to assess exposure-biomarker-adverse effects-and clinical outcomes relationship in an integrated manner. These models also provide suitable platforms for dose individualization approaches due to their ability to predict clinical outcomes based on biomarker information.  



References:
[1] Hansson EK, Amantea MA, Westwood P, Milligan PA, Houk BE, French J, Karlsson MO, Friberg LE. PKPD Modeling of VEGF, sVEGFR-2, sVEGFR-3, and sKIT as Predictors of Tumor Dynamics and Overall Survival Following Sunitinib Treatment in GIST. CPT Pharmacometrics Syst Pharmacol. 2013 Nov 20;2:e84.
[2] Hamberg AK, Wadelius M, Lindh JD, Dahl ML, Padrini R, Deloukas P, Rane A, Jonsson EN. (2010) A pharmacometric model describing the relationship between warfarin dose and INR response with respect to variation in CYP2C9, VKORC1, and age. Clinical Pharmacology and Therapeutics, 87(6): 727–34
[3] Huntjens DR, Danhof M, Della Pasqua OE. Pharmacokinetic-pharmacodynamic correlations and biomarkers in the development of COX-2 inhibitors. Rheumatology (Oxford). 2005 Jul;44(7):846-59.