My Profile

Search abstracts

Lewis Sheiner


2019
Stockholm, Sweden



2018
Montreux, Switzerland

2017
Budapest, Hungary

2016
Lisboa, Portugal

2015
Hersonissos, Crete, Greece

2014
Alicante, Spain

2013
Glasgow, Scotland

2012
Venice, Italy

2011
Athens, Greece

2010
Berlin, Germany

2009
St. Petersburg, Russia

2008
Marseille, France

2007
KÝbenhavn, Denmark

2006
Brugge/Bruges, Belgium

2005
Pamplona, Spain

2004
Uppsala, Sweden

2003
Verona, Italy

2002
Paris, France

2001
Basel, Switzerland

2000
Salamanca, Spain

1999
Saintes, France

1998
Wuppertal, Germany

1997
Glasgow, Scotland

1996
Sandwich, UK

1995
Frankfurt, Germany

1994
Greenford, UK

1993
Paris, France

1992
Basel, Switzerland



Printable version

PAGE. Abstracts of the Annual Meeting of the Population Approach Group in Europe.
ISSN 1871-6032

Reference:
PAGE 24 (2015) Abstr 3645 [www.page-meeting.org/?abstract=3645]


PDF poster/presentation:
Click to open Click to open

Poster: Methodology - New Modelling Approaches


I-05 Robert Andersson Dose-response-time modelling - Second generation turnover model with integral feedback control

Robert Andersson (1,2) Mats Jirstrand (2) Lambertus A. Peletier (3) Michael J. Chappell (1) Neil D. Evans (1) and Johan Gabrielsson (4)

(1) University of Warwick, Coventry, United Kingdom (2) Fraunhofer-Chalmers Centre, Gothenburg, Sweden (3) Leiden University, Leiden, The Netherlands (4) Swedish University of Agricultural Sciences, Uppsala, Sweden

Objectives: To demonstrate the utility of a dose-response-time (DRT) model using a large preclinical biomarker dataset of nicotinic acid (NiAc) induced changes on free fatty acids (FFA).

Methods: Data were collected from studies where different rates, routes, and modes of NiAc provocations on the FFA time course had been tested [1]. All information of the exposure were excluded in order to use a DRT approach. Different models structures, describing the biophase kinetics, were assessed and quantitatively and qualitatively compared. The modeled biophase drug amount was assumed to act as the `driving force`of an inhibitory Imax-model which acted on the turnover of FFA. An integral feedback controller was used to model the slow adaptation process that forces FFA levels back to baseline values under long-term NiAc provocations. Finally, new numerical algorithms were applied, which rely on sensitivity equations to robustly and efficiently compute the gradients of the approximate population likelihood function in mixed-effects modelling [2].

Results: The DRT model successfully captured the behaviour of all FFA time courses. The model predicted 90% adaptation within four days of constant-rate infusions of NiAc, using rates that lead to therapeutic concentrations. High consistency of the pharmacodynamic parameters was shown when compared to an exposure-driven study by Tapani et al. [3].

Conclusions: The versatility of the DRT approach was shown by successfully fitting a DRT model to all FFA time courses. Different feedback mechanisms were described, using moderator compartments and integral feedback control. The consistency in the pharmacodynamic parameters, when comparing to an exposure-driven approach, demonstrates the utility of DRT analysis in a wider context.



References:
[1] Ahlström C. Modelling of tolerance and rebound in normal and diseased rats. Dissertation, University of Gothenburg. 2011.
[2] Almquist J, Leander J, Jirstrand M. Using sensitivity equations for computing gradients of the FOCE and FOCEI approximations to the population likelihood. J Pharmacokin Pharmacodyn. 2015.
[3] Tapani S, Almquist J, Leander J, Ahlström C, Peletier LA, Jirstrand M, Gabrielsson J. Joint feedback analysis modeling of nonesterified fatty acids in obese Zucker rats and normal Sprague-Dawley rats after different routes of administration of nicotinic acid. J Pharm Sci. 2014.