My Profile

Search abstracts

Lewis Sheiner


2019
Stockholm, Sweden



2018
Montreux, Switzerland

2017
Budapest, Hungary

2016
Lisboa, Portugal

2015
Hersonissos, Crete, Greece

2014
Alicante, Spain

2013
Glasgow, Scotland

2012
Venice, Italy

2011
Athens, Greece

2010
Berlin, Germany

2009
St. Petersburg, Russia

2008
Marseille, France

2007
København, Denmark

2006
Brugge/Bruges, Belgium

2005
Pamplona, Spain

2004
Uppsala, Sweden

2003
Verona, Italy

2002
Paris, France

2001
Basel, Switzerland

2000
Salamanca, Spain

1999
Saintes, France

1998
Wuppertal, Germany

1997
Glasgow, Scotland

1996
Sandwich, UK

1995
Frankfurt, Germany

1994
Greenford, UK

1993
Paris, France

1992
Basel, Switzerland



Printable version

PAGE. Abstracts of the Annual Meeting of the Population Approach Group in Europe.
ISSN 1871-6032

Reference:
PAGE 16 (2007) Abstr 1090 [www.page-meeting.org/?abstract=1090]


PDF poster/presentation:
Click to open Click to open

Poster: Applications- Oncology


Katharina Küster Matuzumab – A Population Pharmacokinetic Model and its Evaluation

K. Kuester(1,3), A. Kovar(2), B. Brockhaus(2), C. Kloft(1,3)

(1)Freie Universitaet Berlin, Dept Clinical Pharmacy, Berlin, Germany; (2)Merck KGaA, Dept Clinical Pharmacology and Pharmacokinetics, Darmstadt, Germany; (3)Martin-Luther-Universitaet Halle-Wittenberg, Dept Clinical Pharmacy, Halle, Germany

Objectives: Matuzumab is a humanised monoclonal antibody (mAb) of the immunoglobulin subclass IgG1 which targets the epidermal growth factor receptor (EGFR). A population pharmacokinetic (PK) model based on data from three phase I studies was to be developed including a covariate analysis and evaluated.

Methods: Matuzumab was administered as multiple 1 h iv infusions with 11 different dosing regimens ranging from 400 – 2000 mg, q1w-q3w. For model development 90 patients with 1256 serum concentrations were chosen. All data were fitted simultaneously using the software program NONMEM (ADVAN6, TRANS1, TOL5 and the FOCE INTERACTION estimation method).

Results: Serum concentration-time profiles were best described by a two compartment model. Within this model in addition to the linear clearance (CLL) a second elimination pathway as a non-linear process (Michaelis-Menten kinetics, CLNL) from the central compartment was included with the additional parameters Vmax and km. Total clearance as the sum of CLL (14.5 mL/h) and CLNL (114 mL/h) was in the expected range for mAbs. Due to the non-linearity the half-lives ranged between 1.3 d and 10.7 d at concentrations of 0.02 and 1000 mg/L, respectively. Central distribution volume of 3.72 L (V1) approximated serum volume. Peripheral distribution volume (V2) was estimated to be 1.84 L suggesting limited distribution throughout the body. Inter-individual variability could be established for CLL, V1, V2 and Vmax (22% - 62% CV). As random variation between the different infusions within one subject inter-occasion variability on CLL was successfully implemented (23% CV). All parameters were generally estimated with good precision (RSE < 39%). A covariate analysis was performed to reduce the interindividual variability of the base model. The covariates identified included an influence of weight on V1 and CLL. It should be recognised that our results do not suggest dose adjustments for sex, age or organ functions (liver or kidney). Model evaluation by visual predictive check, case deletion procedure and an external dataset is ongoing and results will be presented.

Conclusion: A final population pharmacokinetic model for matuzumab has been developed including nonlinear PK processes. In addition, relevant and plausible covariates have been incorporated. The developed model combined with PD data could serve as a tool to guide selection of optimal dose regimens for matuzumab, a highly promising “targeted” cancer therapy.