My Profile

Search abstracts

Lewis Sheiner


2017
Budapest, Hungary



2016
Lisboa, Portugal

2015
Hersonissos, Crete, Greece

2014
Alicante, Spain

2013
Glasgow, Scotland

2012
Venice, Italy

2011
Athens, Greece

2010
Berlin, Germany

2009
St. Petersburg, Russia

2008
Marseille, France

2007
København, Denmark

2006
Brugge/Bruges, Belgium

2005
Pamplona, Spain

2004
Uppsala, Sweden

2003
Verona, Italy

2002
Paris, France

2001
Basel, Switzerland

2000
Salamanca, Spain

1999
Saintes, France

1998
Wuppertal, Germany

1997
Glasgow, Scotland

1996
Sandwich, UK

1995
Frankfurt, Germany

1994
Greenford, UK

1993
Paris, France

1992
Basel, Switzerland



Printable version

PAGE. Abstracts of the Annual Meeting of the Population Approach Group in Europe.
ISSN 1871-6032

Reference:
PAGE 22 (2013) Abstr 2774 [www.page-meeting.org/?abstract=2774]


PDF poster/presentation:
Click to open Click to open

Oral: Tutorial


A-27 Justin Wilkins Reproducible pharmacometrics

Justin J. Wilkins (1), E. Niclas Jonsson (2)

(1) SGS Exprimo NV, Mechelen, Belgium; (2) Pharmetheus AB, Uppsala, Sweden

Reproducibility is the cornerstone of scientific research, but is nonetheless a challenging area in pharmacometric data analysis. The large number of intermediate steps required, often involving multiple versions of datasets, combined with a mixture of software tools and the substantial quantity of results that must be tracked and summarized renders traceability an onerous and time-consuming business. 

The concept of “reproducible research” is that the final product of scientific research is not just the text of a report or research article, but should also include the full computational environment used to produce the results, including all the associated code and data – and that this bundle of data and scripts should be shared with others who wish to reproduce these results. Although this is not often possible in pharmacometrics, given that data are usually confidential and that it may not be practical to reproduce hundreds of model fits, we can apply the process of reproducible research to our activities as far as possible to ensure that traceability is maintained. 

Although there are many approaches that may be taken to adopting this principle, we shall focus on the combination of R, knitr and LaTeX. These tools together enable the end-to-end scripting of data file creation, capture of results from external software tools and subsequent analyses, and can automate the creation of publication-quality reports, articles and slide decks.

We shall demonstrate that applying techniques such as these is not particularly difficult, especially now that they are coming into general use and support from software tools is maturing. We shall discuss the substantial benefits of doing so, which include increased accuracy, efficiency, reliability and credibility, elimination of transcription errors, built-in traceability, and the ability to reproduce an analysis, including article or report, in its entirety years later. A live demonstration will be available during the poster sessions.

The example material for the software demonstration is here.