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Part II: Building Robust PK/PD Population 
Models with Bayesian Inference 



Neonates 

• Newly born babies 

• Very sparse sampling 

• Organ maturation 

Pain management in 
neonates 

Acetaminophen 

• Extensive adult data 

• Parent-Metabolite kinetics  
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Very sparse sampling and well-established adult data 

Example: Acetaminophen in Neonates 

Relevant external information 

Human renal function maturation 

N=923 

Source: Rhodin et. al, Pediatr Nephrol (2009) 24:67–76 



Context for Acetaminophen in Neonates 
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Extensive adult data, metabolites are essential 

 Adult literature data 

• PK: parent V and Cl are known from IV data 

• Main metabolites formed mostly in the liver 
~60% glucuronidation & ~30% sulfation  G/S ratio ~ 2:1 

• Elimination via kidney  Cl ~ 7.2 l/h/70kg 

 Metabolism vastly different in neonates 

• Kidney mature at ~1y after birth 

• Glucuronidation (G) quickly matures around birth 

• Sulfation (S) mature long before birth 

 Key challenge is to account for changing metabolism 



Experimental Data 
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IV infusions & sparse sampling for (pre-)term neonates 

 Joint work with Dept. of Paediatric Research Center, 
University Children’s Hospital Basel 
see for details poster II-57 & II-56 

 Patient population N=35 
 
 
 
 

 Dosing regimen 

• 30min IV infusions 

• GA ≤ 28: 5x 15mg/kg every 12h 

• GA > 28: 7x 15mg/kg every    8h 

Mean Min - Max Unit 

Pma 35 23    - 41 weeks 

Weight 2.2 0.46 - 4.2 kg 

# Obs per pat. 7.2 3      - 11 



Modelling Considerations 
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Bayesian modelling reflects a quantitative model context with the prior 

 Key modeling questions in general 

1. What is the objective of the M&S? 

2. In what aspect is the data at hand informative? 

3. Model checking 

 The Bayesian extra is the prior: 
Formulation of the quantitative model context 

• What external information is relevant for the objective and can (or 
must) be taken into account? 

• How can we parametrize the model to optimally mirror prior 
information? 

• Different sources of information can vary in relevance and quality 
 Prior elicitation, see references 



The Quantitative Model Context: The Prior 
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Bayes puts data into a context via the prior 

 Priors 

• Use of correct units 

• Are part of the model 

• Often useful to consider 
plausible 95% CrI 

 Technical aspects of priors 

• Similar to regularization 

• Remove non-identifiability if 
chosen proper 

• Parameterization dependent 

Prior Usage Example for «𝐩(𝐥𝐨𝐠(𝝎𝑪𝒍))» 

Improper Easy to use 

can be problematic 

∝ 1 

Non-

Informative 

Minimize impact on results 

can also be problematic 

∼ Normal(0, 102) 
ωCl ∼ (10−85, 1085)95 

Weakly-

Informative 

Identify scale 

minimal impact, stable inference 

∼ Normal(log(0.5), 2) 
ωCl ∼ (0.01, 25)95 

Informative Contextual domain knowledge 

(renal clearance) 

∼ Normal(log(0.2), log(3)/1.96) 
ωCl ∼ (0.06, 0.6)95 



Parametrization is Key in Bayesian Modeling 
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Model parameters must mirror prior knowledge 

 Objective for neonate model 
Quantify impact of developing metabolism on PK 

 Strategy: Relate to adult data with allometric ‘1/4’ power 
scaling and use known GFR maturation function 

 Key facts identified and choices made 

• Metabolites G and S constitute ~90% of Acetaminophen elimination 

logit(𝜋G+S) ∼ (logit(0.85), logit(0.95))95 

• Clearance of metabolites via the kidney (~7.2 l/h/70kg) 

log𝐶𝑙G,ref ∼ (log(5), log(10))95 

• Glucuronidation formation capacity developing with pma 

𝐶𝑙APAP,G,j = 𝐶𝑙APAP,G,ref 𝜋34  
𝑤𝑗
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 exp(𝜆G (𝑝𝑚𝑎𝑗 − 34)) 

 



The Developing Metabolism in Neonates 
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Fast clearance maturation slows down T½ decrease with age 

 Increase by Cl maturation 
slows T½ weight scaling 

T1
2
= log 2  

V

Cl
 
𝑤
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 Considerable uncertainty & 
variability 

 Metabolism changes quickly 
and is very different from 
2:1 G/S adult ratio 



Doing Bayesian PK/PD 
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The operational & computational hurdles are vanishing 

 NONMEM / Monolix (hybrid approach, not full Bayes) 

• No HMC/NuTS available (yet?)  convergence critical 

• Very restrictive in prior choices  

 Stan, http://mc-stan.org/ 

• PK/PD support growing (stiff ODE solver on Stan GitHub) 

• HMC/NuTS can deal very efficiently with non-linear PK/PD 

• Active community, very responsive user mailinglist 

• Excellent user manual with introductory material 

• ACOP 2015: Workshop from Bill Gillespie on 
«Getting Started with Bayesian PK/PD Modeling Using Stan» 

 WinBUGS/PKBUGS/WBDiff 

http://mc-stan.org/
http://mc-stan.org/
http://mc-stan.org/
http://mc-stan.org/


Key Benefits of a Bayesian Approach 
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Probabilistic knowledge integration facilitates quantitative decisions 

 Bayes provides a quantitative framework to statistically 

model uncertain knowledge (including external to dataset) 

• The prior reflects a quantitative model context 

• External information make models more robust, yet accounting for 

uncertainty is key 

• Model parameterization must mirror prior knowledge 

 Results become conditional on the totality of evidence 

p(θ|𝒟) ∝ p(𝒟|θ) p(θ) 

 Neonate example clinical relevance: 

Maturation alters weight scaling, impacting dosing 
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