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Objectives

* Part 1: Fundamentals. The theory of survival analysis including
competing risks (Andy).

* Part 2: Application. Multistate models and patient benefit (Joachim).
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Survival analysis based on time-to-event (TTE)

Event examples

Death

Cardiovascular death
Drop-out from study

A side effect (e.g. nausea)
Progression (cancer,
HIV/AIDS)

Discharge from hospital

No event,
Right censored
(t=10, DV=0)

ID

Time to event
(t=5.2, DV=1)

Dataset
1D | TIME_|DV_
1 5.2 1
2 10 0

End of
experiment

5.2

time

10
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Survival assessment

e Survival function= S(t): the probability of individual survival beyond
timet

S(t) = Pr(T > t)

tis some time
T is a random variable denoting the TTE

e Cumulative distribution function F(t): The probability of individual having an event before, or
at, time t

F(t)=Pr(T <t)=1-S(¢)
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Non-parametric estimates of S(t)
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Models for survival functions
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e Often based on the hazard function h(t): The instantaneous rate of demise at
time t, conditional on survival to that time

< >
(o) tim PO ST <1+ A0 | T>1]
At—0 At

To build a likelihood

1D | TIME_|DV_

1
2

Dataset

5.2
10

1
0

Probability of surviving beyond a time t (right censored data, t=T, DV =0):
t
S(f) = exp(— jo h(u) Ou)
Probability density function for having an event at time t (t=T, DV =1):

<
£ = Jim “EELEED s

As long as h(t)>0
then

lim;_ . S(t) = 0.
Censored
observations will
have events in the
future




Common hazard modeling approaches

* Semi-parametric: Cox proportional hazard model

fx, L — Model Parameters
h(l‘) :HR — h](t) _ hO(t)eﬂx _ eﬁ(xl—xz)
h2 (t) ho (t)e ’

Covariates

— Estimates hazard ratios (HR) ... relative risk between groups

 Parametric: Absolute risk, baseline is modeled.

h(t) = ho(t) - ha(x, B)
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Pharmacometric survival analysis?

* Typically fully parametric (modeled baseline)
— Can more easily handle time-varying covariates (e.g. exposure instead of AUC)

hy ()= Aa(Ar)™

Cp
Cp + C50

h, () = hy - (1= )

—  Clinical trial simulations

 Joint models: Shared parameters with other models
—  E.g. failure to include dropout may introduce bias in parameter estimates

 Repeated events (traditionally not handled in standard analysis)
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Designs can be optimized using these
parametric models.

e Optimization of dose levels, number of individuals in each group.

* Adaptive procedures allow for fewer assumptions about model
structure.

The AAPS Journal (2018) 20: 24 @ ! )
DOI: 10.1208/512248-017-0166-5 The AAPS Journal (2018) 20: 85 @ CrossMark
DOI: 10.1208/512248-018-0242-5

Research Article .
Research Article
Adaptive Optimal Designs for Dose-Finding Studies with Time-to-Event Implementing Optimal Designs for Dose-Response Studies Through Adaptive
Outcomes Randomization for a Small Population Group
Yevgen Ryeznik,l’z"' Oleksandr Sverdlov,3 and Andrew C. Hooker’ Yevgen Ryeznik,l’z’4 Oleksandr Sverdlov,® and Andrew C. Hooker?
https://doi.org/10.1208/s12248-017-0166-5 https://doi.org/10.1208/s12248-017-0166-5
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Goodness-of-fit for parametric survival
analysis models

Survival (%)

Visual Predictive Check

1 L
Dose: 200 mg

1 1
Dose: 50 mg

Survival (%)

Time

Kaplan-Meier plot of data (blue line) and 95% prediction intervals of the Kaplan-Meier plot (green area, 100 simulations).

May also see VPCs for the cumulative distribution function F(t): F@)=PT <t)=1-S(t)
The probability of individual having an event before, or at, time t B
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Model building tools

Hazard assessment: Hazard based
visual predictive check
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Huh, Hutmacher, JPKPD, 2016

Hazard assessment: Kernel-Based
Visual Hazard Comparison (kbVHC)
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Goulooze et al, AAPS J, 2018
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Covariate assessment: The Kaplan-
Meier Mean Covariate plot
(KMMC)
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Hooker, Karlsson, PAGE, 2012
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Other tutorials on survival analysis

Holford & Lavielle, PAGE, 2011

Citation: CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e43; doi:10.1038/psp.2013.18
© 2013 ASCPT Al rights reserved 2163-8306,/12

www.nature.com/psp

TUTORIAL
A Time to Event Tutorial for Pharmacometricians

Nick Holford"

Models for time to event provide the link between standard pharmacokinetic-dynamic models disease progression, and clinical
outcome events. The biological basis for events may be expressed quantitatively in terms of a hazard function. This tutorial
explains hazards and how doses can be linked to events predicted from hazard functions.

CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e43; doi:10.1038/psp.2013.18; advance online publication 15 May 2013

https://dx.doi.org/10.1038%2Fpsp.2013.18
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A Hiccup: competing risks

* Assume we want to study time to death attributable to a cardiovascular
cause

Cardiovascular
death
Patient If non-cardiovascular death occurs,
population Non- cardiovascular death will never occur

cardiovascular
death

e Standard methods would separate the two causes and treat events of the
other type as censoring events (for Kaplan-Meier and semi-parametric and
parametric cause-specific hazard modeling).

— Assumes that censored observations will have events in the future! (this is wrong)
— This may overestimate the size of the hazard! (this is bad)

14
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Cause specific hazard function BT

1 2 1

Other death, >
. 2 10 0

Cardiovascular death cause specific hazard data Right censored
(t=7.5, DV=0) 3 75 0
3 4 S
No event,
Right censored
(t=10, DV=0)
D 2

End of
experiment

Cardiovascular death
(t=5.2, DV=1)

5.2 10

time 15
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An solution for competing events:
The Cumulative Incidence Function (CIF)

* The probability of experiencing the

event k before time t and before the B T e o s
occurrence of a different type of event. e o

CIF,(t) =Pr(T<t,D=k)

incidence

* Non-parametric estimator .
neyx; .
CIF, np, k(t) — § Skm all causes (t) o
l TlSt l Survival time (days)
ney ; : The number of events of type k at T; Austin et al, Circulation, 2016

n; : total number of observations at risk at time T;


https://doi.org/10.1161/CIRCULATIONAHA.115.017719
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Semi-parametric method for modeling the CIF

* Fine-Gray model: A Proportional Hazards Model for the Subdistribution of
a Competing Risk

* Proportional Hazard model to describe a hazard derived from CIF

d
hy cip(t) = — Eln(l — CIF, (1))

* This is called a “subdistribution hazard”: instantaneous risk of failure from
the kth event type in subjects who have not yet experienced an event of
type k (including those who have previously experienced a competing
event).

Fine & Gray, JASA, 1999. Langenhorst et al, Blood advances, 2019



https://doi.org/10.1080/01621459.1999.10474144
https://doi.org/10.1182/bloodadvances.2018029421

Modeling the subdistribution hazard function =

parametrically

instantaneous risk of failure from the kth event in subjects
who have not yet experienced an event of type k (including
those who have previously experienced a competing event).

A
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Cardiovascular death
(t=5.2, DV=1)

Other death 1 5.2 1
(t=7.5, DV=0, 2 10 0
t;=c0, DVi=1) 3 7.5 0
> 3 00 1
No event,
® Right censored
h (t=10, DV=0)

5.2

time

10

End of
experiment
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An alternative approach: Multi-state models =+
for survival analysis

* Potentially a more natural representation of the system

e Events prior to the event(s) of interest may substantially change the
risk of the event of interest to occur.

2: Response

/ r2(t) \\
A24(1)

. Ma(t)
1: Stable Disease b 4: Death

= Aaa(t)
Bever et al, Biometrical Journal, 2020 Ma(t)

Ibrahim et al, PAGE 2019

3: Progression

Krishnan et al, CPT:PSP, 2021
Krishnan et al, PAGE, 2021 13
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Conclusions

e Survival analysis can be very useful but will typically not account for
competing events, which may bias the analysis.

* Methods that account for competing events exist and should be used
when competing events are present.



