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Objectives

• Part 1: Fundamentals. The theory of survival analysis including 
competing risks (Andy).

• Part 2: Application. Multistate models and patient benefit (Joachim).
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Survival analysis based on time-to-event (TTE)

time

ID Time to event
(ti=5.2, DVi=1)

1

2

5.2 10

End of 
experiment

ID TIME DV

1 5.2 1

2 10 0

No event, 
Right censored
(ti=10, DVi=0)

Dataset

Event examples
• Death
• Cardiovascular death
• Drop-out from study
• A side effect (e.g. nausea)
• Progression (cancer, 

HIV/AIDS)
• Discharge from hospital
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Survival assessment

• Survival function= S(t): the probability of individual survival beyond 
time t

• Cumulative distribution function F(t): The probability of individual having an event before, or 
at, time t

( ) Pr( ) 1 ( )F t T t S t= £ = -

t is some time 
T is a random variable denoting the TTE

( ) Pr( )S t T t= >
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Non-parametric estimates of S(t)

% Survival (IDs without 
an event) in Data

Parametric confidence 
interval

Handles 
censoring

Kaplan-Meier estimator

!𝑆!" 𝑡 = %
#: %!&'

1 −
𝑛𝑒#
𝑛#

𝑛𝑒# : The number of events at 𝑇#

𝑛# : The number of individuals who 
have not had an event or censoring 
at or before 𝑇#

Implicitly assumes that censored 
observations will have events in the 
future

! 𝑆 !
"
𝑡
≈
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• Often based on the hazard function h(t): The instantaneous rate of demise at 
time t, conditional on survival to that time

Probability of surviving beyond a time t (right censored data, t=T, DV =0):

Probability density function for having an event at time t (t=T, DV =1):

Models for survival functions
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ID TIME DV

1 5.2 1

2 10 0

Dataset

To build a likelihood

As long as h(t)>0 
then 
lim'→) 𝑆 𝑡 = 0.
Censored 
observations will 
have events in the 
future
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Common hazard modeling approaches 

• Semi-parametric: Cox proportional hazard model

⎼ Estimates hazard ratios (HR) … relative risk between groups

• Parametric:  Absolute risk, baseline is modeled.
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Pharmacometric survival analysis?

• Typically fully parametric (modeled baseline)
⎼ Can more easily handle time-varying covariates (e.g. exposure instead of AUC)

⎼ Clinical trial simulations

• Joint models:  Shared parameters with other models
⎼ E.g. failure to include dropout may introduce bias in parameter estimates

• Repeated events (traditionally not handled in standard analysis)
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Designs can be optimized using these 
parametric models.
• Optimization of dose levels, number of individuals in each group.
• Adaptive procedures allow for fewer assumptions about model 

structure.
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Adaptive Optimal Designs for Dose-Finding Studies with Time-to-Event
Outcomes
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Abstract. We consider optimal design problems for dose-finding studies with censored
Weibull time-to-event outcomes. Locally D-optimal designs are investigated for a quadratic
dose–response model for log-transformed data subject to right censoring. Two-stage adaptive
D-optimal designs using maximum likelihood estimation (MLE) model updating are
explored through simulation for a range of different dose–response scenarios and different
amounts of censoring in the model. The adaptive optimal designs are found to be nearly as
efficient as the locally D-optimal designs. A popular equal allocation design can be highly
inefficient when the amount of censored data is high and when the Weibull model hazard is
increasing. The issues of sample size planning/early stopping for an adaptive trial are
investigated as well. The adaptive D-optimal design with early stopping can potentially
reduce study size while achieving similar estimation precision as the fixed allocation design.

KEY WORDS: adaptive design; censoring; D-optimal design; dose finding; Weibull distribution.

INTRODUCTION

Dose–response studies play an important role in clinical
drug development. Such studies are typically randomized,
multi-armed, placebo-controlled parallel group designs in-
volving several dose levels of an investigational drug. The
study goals may be to estimate the drug’s dose–response
profile with respect to some primary outcome measure and to
identify a dose or doses to be tested in subsequent confirma-
tory phase III trials. Optimization of a trial design can allow
an experimenter to achieve study objectives most efficiently
with a given sample size.

Many clinical trials use time-to-event outcomes as
primary study endpoints. The outcome could be, for example,
progression-free survival in oncology, duration of viral
shredding in virology, time from treatment administration
until pain symptoms disappear in studies of migraine, time to
onset/duration of anesthesia in dentistry, or time to first
relapse in multiple sclerosis. Optimal experimental designs

for multi-arm time-to-event outcome trials are warranted, but
finding and implementing such designs in practice may be
challenging due to uncertainty about the model for event
times, delayed and potentially censored outcomes, and
dependence of optimal designs for survival models on model
parameters that are unknown at the trial outset (the so-called
locally optimal designs).

Recently, there has been an increasing interest in
research and application of optimal designs for experiments
with time-to-event outcomes. For problems where the design
space is discrete (e.g., treatment is a classification factor), the
design optimization involves finding optimal allocation pro-
portions to the given treatment groups to maximize efficiency
of treatment comparisons for selected study objectives (1).
Optimal allocation designs for survival trials with two or more
treatment arms were studied in (2–6) to name a few. These
optimal allocation designs can be implemented in practice by
means of response–adaptive randomization with established
statistical properties (7).

Another class of problems involve dose–response studies
where the design space is an interval and therefore the dose
level is measured on a continuous scale. In this case, for a
given dose–response regression model, an optimal design
problem is to determine a set of optimal doses and the
probability mass distribution at these doses to maximize some
convex criterion of the model Fisher information matrix.
Optimal designs for two-parameter exponential regression
models with different censoring mechanisms were investi-
gated in (8–10). Optimal designs for most efficient estimation
of specific quantiles of censored Weibull or log-normal
observations were developed in (11). Optimal design
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Implementing Optimal Designs for Dose–Response Studies Through Adaptive
Randomization for a Small Population Group
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Abstract. In dose–response studies with censored time-to-event outcomes, D-optimal
designs depend on the true model and the amount of censored data. In practice, such designs
can be implemented adaptively, by performing dose assignments according to updated
knowledge of the dose–response curve at interim analysis. It is also essential that treatment
allocation involves randomization—to mitigate various experimental biases and enable valid
statistical inference at the end of the trial. In this work, we perform a comparison of several
adaptive randomization procedures that can be used for implementing D-optimal designs for
dose–response studies with time-to-event outcomes with small to moderate sample sizes. We
consider single-stage, two-stage, and multi-stage adaptive designs. We also explore robustness
of the designs to experimental (chronological and selection) biases. Simulation studies
provide evidence that both the choice of an allocation design and a randomization procedure
to implement the target allocation impact the quality of dose–response estimation, especially
for small samples. For best performance, a multi-stage adaptive design with small cohort sizes
should be implemented using a randomization procedure that closely attains the targeted D-
optimal design at each stage. The results of the current work should help clinical investigators
select an appropriate randomization procedure for their dose–response study.

KEY WORDS: D-optimal; randomization design; small population group; time-to-event outcome;
unequal allocation.

INTRODUCTION

Multi-arm clinical trials are increasingly used in modern
clinical research. Some examples of multi-arm trials include
phase II dose–response studies (1), drug combination studies
(2), multi-arm multi-stage (MAMS) designs (3,4), and master
protocols to study multiple therapies, multiple diseases, or
both (5). A benefit of multi-arm trials is the ability to test
many new promising treatments and address multiple re-
search objectives within a single protocol, thereby potentially
speeding up research and development processes compared
to a sequence of single-arm or two-arm trials (6).

When designing a multi-arm trial, an important consid-
eration is the choice of the allocation ratio, i.e., the
target allocation proportions across the treatment arms. The
choice of the allocation ratio usually stems from the study

objectives. Many clinical trials are designed with an intent to
have equal allocation to the treatment groups, which is
consistent with a principle of Bclinical equipoise^ and
frequently leads to maximum statistical power for treatment
comparisons (e.g., if the primary outcome variance is constant
across the groups) (7). On the other hand, unequal allocation
designs have recently gained considerable attraction (8,9).
For instance, unequal allocation designs may be preferred
over equal allocation designs under the following circum-
stances: (i) in studies with nonlinear dose–response estima-
tion objectives (10–13); (ii) when there is heterogeneity of the
outcome variance across the treatment arms (14–16); (iii)
when there is an ethical imperative to allocate greater
proportion of study patients to superior treatment arms (17–
19); (iv) when there is an unequal interest in certain
treatment comparisons (20); and (v) when there is a
differential treatment cost and an investigator wants to get
most power for the given budget (21). Importantly, unequal
allocation designs can involve non-integer (irrational) num-
bers. For example, in a K > 2ð Þ-arm trial comparing K−1ð Þ
experimental treatments versus control (Dunnett’s proce-
dure), the optimal allocation ratio minimizing the sum of
variances of the K−1ð Þ pairwise comparisons is given by
σ1

ffiffiffiffiffiffiffiffiffiffi
K−1

p
: σ2 : … : σK , where σi is the standard deviation of

the outcome in the ith treatment group (7).
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Goodness-of-fit for parametric survival 
analysis models

Kaplan-Meier plot of data (blue line) and 95% prediction intervals of the Kaplan-Meier plot (green area, 100 simulations).

Visual Predictive Check
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( ) Pr( ) 1 ( )F t T t S t= £ = -May also see VPCs for the cumulative distribution function F(t): 

The probability of individual having an event before, or at, time t



Model building tools
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Covariate assessment: The Kaplan-
Meier Mean Covariate plot 
(KMMC)

Hooker, Karlsson, PAGE, 2012

Hazard assessment: Kernel-Based 
Visual Hazard Comparison (kbVHC) 

Goulooze et al, AAPS J, 2018fitted Gompertz hazard profiles. As seen in the figure, the
Weibull and Gompertz profiles are very similar except for

the very early period of time, so it is not easy to distinguish

between those two profiles even with the parametric
models. VPC results of both KM and nonparametric hazard

estimates are shown in Supplementary Fig. 7. As expected

from Supplementary Fig. 6, misfit of Gompertz model is
not outstanding except the early period of time. Under-

prediction of Gompertz survival function can be observed

in the beginning of KM based VPC, but it is not obvious—
alternative time scales might be necessary for better reso-

lution. Misfit of hazard in early time points can be more

clearly seen in hazard-based VPCs using either KLBC or

KGBC methods. When compared with VPC results of
Weibull model fitted to the same Weibull survival dataset

(Supplementary Fig. 8), it is suggested that the Weibull

model is better to describe the observed survival dataset
than the Gompertz model.

In conclusion, even though nonparametric hazard esti-

mators include a certain level of bias in their estimates,
they can be a valuable tool to evaluate a hazard model in

the same scale as what being modeled. Investigation of

changing risk over time rather than survival rate enables
more direct interpretation of the results, if there is any lack

of fit in the developed hazard model.

Fig. 6 Visual predictive check (VPC) of generalized gamma model
fitted to the generalized gamma survival datasets using Kaplan–Meier
(KM) estimates and hazard estimates from selected nonparametric

estimation methods. BH1 binned hazard estimator 1, KLBC kernel
method of local bandwidth with boundary correction, KGBC kernel
method of global bandwidth with boundary correction

J Pharmacokinet Pharmacodyn (2016) 43:57–71 67

123

Hazard assessment: Hazard based 
visual predictive check

Huh, Hutmacher, JPKPD, 2016

https://www.page-meeting.org/default.asp?abstract=2564
https://doi.org/10.1208/s12248-017-0162-9
https://doi.org/10.1007/s10928-015-9454-9


Other tutorials on survival analysis
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OVERVIEW

This tutorial is intended for pharmacometricians with a good 
grounding in the basic concepts of pharmacokinetics, phar-
macodynamics, and population modeling.1 It links these 
concepts to the principles of time-to-event (TTE) analysis. 
The idea of the hazard is essential to understand why and 
when events occur. Simple mathematical operations con-
vert the hazard into quantities such as the survivor function 
and likelihood that are useful for graphical representation 
and parameter estimation. The ideas will be explained using 
statistical and mathematical theory only to the extent nec-
essary to understand the quantitative applications to clinical 
pharmacology. An excellent guide to the statistical aspects of 
survival analysis can be found in Collett’s textbook.2 A more 
light-hearted historical view can be found in chapter 7 of 
Senn’s book.3

THE HAZARD: THE BIOLOGICAL BASIS OF SURVIVAL
What is an event?
Events are things that happen at a particular time. The tradi-
tional biomedical example of an event is death. The descrip-
tion of the times of death in a population is known as survival 
analysis and has been the motivating factor for statistical 
theory and methodology. More generally, the description of 
event times is called TTE analysis. Death (except in cats) 
occurs only once for an individual, but there are many other 
kinds of biomedical events that may occur more than once, 
e.g., epileptic seizures, myocardial infarctions, bone frac-
tures, and kidney transplant rejections.

The description of multiple events in an individual is called 
repeated TTE analysis. If many events occur in the same 
individual, then the average of the number of events over a 
convenient interval is described by the event frequency, e.g., 
epileptic seizures and episodes of angina pain. Although 
these frequency measures are simple to understand, the 
underlying biological and pharmacological basis for predict-
ing the frequency may be concealed by ignoring the time of 
each event and only recording the number of events. An addi-
tional aspect of an event is that it may be associated with a 
severity score that may be combined with a model for the 
frequency of events.4 This tutorial will confine itself to models 
for single events.

Why and when do events happen?
Why events happen is often poorly understood, but there are 
two main mechanisms that might be considered. An event such 
as death is typically related to the things that have happened 
throughout life. It is the cumulative effect of living that can be 
used to predict the time to death. On the other hand, death may 
occur without any obvious connection to previous lifestyle, e.g., 
being struck by lightning (although that will be more common 
in those who live more in the outdoors). Such apparently ran-
dom times of events can be described in terms of frequency by 
distributions such as the Poisson distribution, but because they 
are random, they are not very interesting from the viewpoint of 
understanding biology, disease, and the influence of medical 
treatment. This tutorial focuses on those kind of events that are 
predictable from things happening before the event.

Pharmacokinetics and survival: biological brothers
The bread and butter of pharmacometrics is the science of 
pharmacokinetics. In the simplest case, the time course of 
drug disappearance from the body may be described by an 
elimination rate constant. The elimination rate constant (k) 
defines the relationship between the amount of drug in the 
body and the instantaneous rate of elimination (Eq. 1).

(1)

There is an exact parallel between this well-known equa-
tion and the basic equation of survival analysis (Eq. 2).

(2)

The number of people alive corresponds to the amount of 
drug in the body (which is directly proportional to the number 
of molecules still in the body). The number of people dying 
corresponds to the rate of elimination (which is directly pro-
portional to the number of molecules being lost (“killed”)).

The elimination rate constant, k, is simply the proportional-
ity constant connecting amount to elimination. In the num-
ber dying expression (Eq. 2), the constant h is the hazard. 
It has exactly the same meaning as k in the rate of elimina-
tion expression (Eq. 1)—the proportionality constant relating 
people who are alive to the death rate. Understanding what 
the hazard means is at the heart of TTE analysis.

Rate of Elimination = Amountk × 

Number of People Dying = Number of People Aliveh × 

Models for time to event provide the link between standard pharmacokinetic–dynamic models disease progression, and clinical 
outcome events. The biological basis for events may be expressed quantitatively in terms of a hazard function. This tutorial 
explains hazards and how doses can be linked to events predicted from hazard functions.
CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e43; doi:10.1038/psp.2013.18; advance online publication 15 May 2013
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Holford & Lavielle, PAGE, 2011
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A Hiccup: competing risks
• Assume we want to study time to death attributable to a cardiovascular 

cause

• Standard methods would separate the two causes and treat events of the 
other type as censoring events (for Kaplan-Meier and semi-parametric and 
parametric cause-specific hazard modeling). 
⎼ Assumes that censored observations will have events in the future! (this is wrong)
⎼ This may overestimate the size of the hazard! (this is bad) 
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Patient 
population

Cardiovascular 
death

Non-
cardiovascular 

death

If non-cardiovascular death occurs, 
cardiovascular death will never occur



Cause specific hazard function

time

ID
Cardiovascular death

(ti=5.2, DVi=1)

1

2

5.2 10

ID TIME DV

1 5.2 1

2 10 0

3 7.5 0

No event, 
Right censored
(ti=10, DVi=0)

15

3

Cardiovascular death cause specific hazard data 

End of 
experiment

Other death,
Right censored
(ti=7.5, DVi=0)



An solution for competing events: 
The Cumulative Incidence Function (CIF)
• The probability of experiencing the 

event k before time t and before the 
occurrence of a different type of event. 

𝐶𝐼𝐹!(t) = Pr(T ≤ t, D = k )

• Non-parametric estimator

3𝐶𝐼𝐹"#,! 𝑡 = 6
%: '!()

7𝑆*+, ,-- .,/010 𝑡
𝑛𝑒*,%
𝑛%
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606  Circulation  February 9, 2016

A 10-year increase in age increased the relative incidence 
of cardiac death by 42%, whereas it increased the relative inci-
dence of noncardiac death by 14%. Similarly, a 10-year increase 
in age increased the cause-specific hazard of cardiac death by 
52%, whereas it increased the cause-specific hazard of noncar-
diac death by 31%. Thus, age had a more pronounced effect on 

both the incidence and cause-specific hazard of cardiac mortal-
ity than on noncardiac mortality. Furthermore, age had a more 
pronounced effect on the cause-specific hazard of a given out-
come than it did on the incidence of the same outcome.

The presence of cancer had a small and nonsignificant 
effect on the cause-specific hazard of cardiac death, whereas 
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Figure 1. Cumulative incidence functions. CIF indicates cumulative incidence function; and KM, Kaplan–Meier.
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Figure 2. Cumulative incidence functions and Kaplan–Meier estimates. CIF indicates cumulative incidence function; and KM, 
Kaplan–Meier.

Austin et al, Circulation, 2016𝑛𝑒!,# : The number of events of type k at 𝑇#
𝑛# : total number of observations at risk at time 𝑇#

https://doi.org/10.1161/CIRCULATIONAHA.115.017719


Semi-parametric method for modeling the CIF

• Fine-Gray model: A Proportional Hazards Model for the Subdistribution of 
a Competing Risk
• Proportional Hazard model to describe a hazard derived from CIF

ℎ!,234 𝑡 = −
𝑑
𝑑𝑡
ln(1 − 𝐶𝐼𝐹!(t))

• This is called a “subdistribution hazard”: instantaneous risk of failure from 
the kth event type in subjects who have not yet experienced an event of 
type k (including those who have previously experienced a competing 
event). 

17Fine & Gray, JASA, 1999. Langenhorst et al, Blood advances, 2019

https://doi.org/10.1080/01621459.1999.10474144
https://doi.org/10.1182/bloodadvances.2018029421


Modeling the subdistribution hazard function 
parametrically

time

ID
Cardiovascular death

(ti=5.2, DVi=1)

1

2

5.2 10

ID TIME DV

1 5.2 1

2 10 0

3 7.5 0

3 ∞ 1

No event, 
Right censored
(ti=10, DVi=0)

18

3

instantaneous risk of failure from the kth event in subjects 
who have not yet experienced an event of type k (including
those who have previously experienced a competing event). 

End of 
experiment

Other death
(ti=7.5, DVi=0 ,

ti=∞, DVi=1)



An alternative approach: Multi-state models 
for survival analysis  
• Potentially a more natural representation of the system

• Events prior to the event(s) of interest may substantially change the 
risk of the event of interest to occur.

19

Patient 
population

Cardiovascular 
death

Non-
cardiovascular 

death

BEYER ET AL. 553

F I G U R E 1 Oncology multistate model used for OS predictions

The quantity !"#($, %) denotes the probability to be in state " at time $ and in state # at time %, where Past is a &-algebra generated
by the process ' up to time $, or more informally the accumulated knowledge about the process’ history up to $. A transition
hazard, that is, the instantaneous risk to move from state " to # at time %, is defined as

("#(%) ⋅ )% ∶= ! ('(%+)%)− = #|'%− = "), ", # ∈ 1, 2,… , * , " ≠ #, (1)

and the corresponding cumulative transition hazard by

Λ"#(%) = ∫
%

0
("#($))$.

In what follows we will assume ' to be Markov.
This assumption appears sensible in our specific oncology application, because a patient with an early tumor progression will

likely have a different subsequent risk to die compared to a patient being progression-free for a longer period.

3.2 OS prediction in a four-state oncology multistate model
In Sections 4 and 5, we will use a multistate model to make OS predictions. The model is depicted in Figure 1 and consists of
four states: patients start in an initial state (State 1). Patients stay in this initial state as long as their disease is stable or they leave
the study (hence we denote the initial state as SD). Out of this initial state, after receiving treatment, they can either respond
(Response, State 2), progress (progressive disease [PD] State 3), or die without observed response or progression (Death, State
4). Responding patients can either progress or die, and patients who progressed remain at the risk of dying, that is, a 3 → 4
transition. Note that the RECIST criteria define SD as disease that is stable for a minimal duration (usually until at least the first
assessment). The initial state of the proposed model uses this definition. Also, we do not distinguish between CR and PR. In our
case studies, the number of complete responders was too low to consider CR as separate state.

To inform decision-making in early oncology drug development as described in Section 1 not only based on response, but
on OS predictions based on the above multistate model, we have to derive the corresponding survival function for OS, +,+ .
This function will depend on the transition hazards ("# and/or their cumulative versions Λ"# , either directly or indirectly through
transition probabilities !"# , for ", # ∈ {1,… , 4}. Specifically,

+,+ (%) = 1 − !14(0, %)

= 1 −
(
!1→4(0, %) + !1→3→4(0, %) + !1→2→4(0, %) + !1→2→3→4(0, %)

)
. (2)

The four terms !1→4,!1→3→4,!1→2→4, and !1→2→3→4 quantify the transition probabilities to move from the initial State 1 to
the death State 4, via all possible paths. The corresponding formulas are derived in the Appendix, and how to estimate +,+ is
discussed in Section 3.3.

3.3 Model assumptions
We will use a multistate model to compute a prediction of +,+ for the patients recruited to an early phase trial. In what follows,
the characteristics of such an early phase trial are:
1. Single-arm trial with a modest number of patients, -. We assume throughout that - = 40.
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Conclusions

• Survival analysis can be very useful but will typically not account for 
competing events, which may bias the analysis.
• Methods that account for competing events exist and should be used 

when competing events are present. 
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