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Objective

In certain clinical trials, the response variable is restricted into an interval (e.g. visual analogue scale VAS). 
This response variable may be measured repeatedly during the trial. A natural distribution for such a variable is 
a multivariate Beta distribution. For clinical trial simulations, it is therefore necessary to generate data  from 
such a distribution  in order to perform inference and/or predictions.
We propose hereafter to address the particular case of the bivariate Beta (bivBeta) distribution and present the 
approach (and corresponding code) we use to generate and analyze this type of data.

Methods

We assume a clinical trial in which a response variable Y, characterized by an interval distribution, is evaluated 
at both early (Y1) and late stage (Y2). The clinical trial may have been designed in such a way that at the 
occasion of an interim analysis, one wants to predict Y2, based on the available Y1 data for decision making 
(e.g. futility or success of the trial). 

Conclusion
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Figure 2: Scatterplots and densityplots of bivariate Beta distributed variables. Red line represents x=y and 
cross represents median Y1 and median Y2.

We present a method to generate bivariate Beta distributed data, where:
1. Beta variables are derived from Dirichlet distribution,
2. Dirichlet distribution parameters are obtained in case of correlated variables.

Although it was not possible to fit models for bivariate Beta variables directly (in WinBUGS), we could fit 
models considering these variables as bivariate Normal, after appropriate transformation.
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Simulation of time trends in a random variable is 
frequently done within a multivariate framework 
where the different variables represent the state of 
the random variable at different point in time.

With random variables having possibly skewed interval distributions (see for instance, Figure 1), it is not 
recommended to use e.g. a truncated multivariate normal distribution for simulation. Rather, it is 
recommends to use multivariate Beta distributions. 
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Figure 1: Distribution of a score range from -10 to 50, 
as an illustration of interval response variable.

The flexible Beta distribution is widely used in life 
sciences to describe the probability density 
distribution of proportions or relative frequencies of 
a random univariate variable.
Generation of univariate Beta-distributed random 
variable is straightforward, but  generating pairs of 
correlated Beta-distributed random variables is more 
complex since there is no natural multivariate 
extension of univariate Beta distribution (Johnson 
and Kotz, 1976 [1]).

Following Catalani (2002)[2] it is proposed to use a 
Dirichlet distribution to simulate outcomes from  a 
bivBeta distribution. 

1/ Introduction of a shared random variable

The marginals in a Dirichlet distribution are Beta variables

Let {X1, X2, X3} ~ Dirichlet(3, α 0, α 1, α 2, α 3), with 

Xi = Zi/(Z1+Z2+Z3),      i = 1, 2, 3

where Z i’s, are independent gamma variables Zi ~ Γ (shape=α j, scale=1)
A popular technique for generation of correlated random variables is 
to introduce a shared random variable:
Define

Y1 = X1+X3 Y1 ~ Be(α 1+α 3, α 0+α 2)
Y2 = X2+X3 Y2 ~ Be(α 2+α 3, α 0+α 1)

Set γ = (α 0+α 1+α 2+α 3), then we can derive the correlation coefficient([2])

ρ(Y1, Y2) = ( -α 1α 2 + α 0α 3) / sqrt((α 1+α 3)(α 0+α 2)(α 2+α 3)(α 0+α 1))’

Sampling data from a bivariate density with beta marginals, with
parameters, c1, c2 and c3, c4, and r, positive correlation coefficient,

Set c1 = α 1+α 3
c2 = α 0+α 2
c3 = α 2+α 3 and c4 = α 0+α 1 = c1+c2-c3

which implies c1+c2>c3 and    r = (-α 1α 2+α 0α 3)/sqrt(c1c2c3(c1+c2-c3))’

Assuming r>0, we solve for {α 0, α 1, α 2, α 3}, as functions of {c1, c2, c3, c4 , r}
and we obtain:

α 3 = r* sqrt(c1c2c3(c1+c2-c3))+ c1c3 / (c1+c2)

it follows,
α 1 = c1 -α 3
α 2 = c3 -α 3
α 0 = c2 -c3+α 3

2/ Elicitation of the alphas

Results

1/ Data generation

The Beta distribution parameters c1, c2 and c3 can be derived from the mean and standard deviation of Y1 
as follows (note: c4 = (c1+c2) – c3):
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the sample mean at time 1 and time 2, sample variance and 
expected coefficient of correlation, we would obtain the following 
Beta parameters estimates, in the two below examples (Table 1 
and Figure 2):
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Table 1: Elicitation of alpha values in 
two specific examples 

2/ Data analysis
To analyze the bivBeta data, a Bayesian approach was used considering the distribution of the endpoint as 
bivariate Normal, after logit transformation. As an illustration, we simulated a simple clinical trial scenario 
involving one placebo group and one active treatment group. The simulated data corresponded to 20 
patients per group, with Beta distributed data at two occasions T1 and T2. The output of this analysis is 
provided hereafter: 

In a second example (not reported here) we simulated a scenario 
where Y1 (response at T1) were complete but Y2 (response at T2) 
were incomplete. This scenario could, for instance, correspond to 
the situation observed at an interim point during a clinical trial. 

Using the same data set as described above but replacing 50% of 
the original data at T2 by missing values, we could fit the same
model and obtain similar parameter estimates (but more variability 
in the meanT2 estimations) [Results available on demand].

Acknowledgements: 
- Billy Amzal
- Marina Savelieva


