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Estimation of ligand binding parameters to receptors in vitro
constitutes a basic operation in many areas of scientific research.
Therefore, efficient and accurate determination of these parameters
is paramount for evaluation of ligand potency, interactions with
other molecules, and prediction of in vivo performance. Previous
analyses have demonstrated that simultaneous non-linear
regression (SNLR) versus sequential non-linear regression (NLR)
provided better approximation to the true values of ligand binding
parameter estimates[1].
The aim of this study was to extend this previous work and
compare SNLR and NLR with commonly encountered experimental
error, specifically residual variability (RUV) of binding
measurements, experiment to experiment variability (BEV) and
non-specific binding (BNS). Additionally, optimal design (ligand
concentrations and sampling times) of these ligand binding
experiments was examined using the optimal design software
PopED 2.08 [2] for SNLR analysis.
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Monte Carlo simulation and estimation were used to evaluate the
performance of various NLR and SNLR methods for estimating
ligand binding parameters. Data simulation and estimation were
performed using FOCE(I) in NONMEM VI. Simulation followed by
parameter estimation of ligand binding data was performed for
equilibrium, dissociation, association and non-specific binding
experiments using the following mathematical equations:

Briefly, NLR was performed by estimating parameters from one 
experiment and then introducing one or more of the parameters k1, 
k-1, Bmax or α as constants for subsequent analyses. SNLR was 
performed by fitting data simultaneously from each experiment. 

Subtraction of BNS from total binding measurements leads to
significantly biased estimates of all parameters for both NLR and
SNLR (not shown). Parameters estimates are improved by
estimating specific binding α; SNLR preformed considerably better
than NLR (Fig. 2).

Conclusions

Overall, SNLR provided superior parameter estimation in both
precision and accuracy compared to NLR. In addition, substantial
improvement can be made to the design of these experiments
enabling a large reduction (>50%) in the samples/ligand
concentrations needed to estimate parameters with high certainty.
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Figure 1. Percent RMSE of Bmax, K-1 and K1 estimates using the NLR and SLNR methods
with BEV on Bmax.

Figure 2. Percent RMSE of Bmax, K-1 and K1 estimates using the NLR and SLNR
with addition of α for BNS.

Figure 3. Expected %CV for ligand binding parameters based on D-optimality
from PopED with RUV, BNS and BEV.

Across the span of residual error supplied in these simulations,
both methods typically provided unbiased model based
parameter estimates (<1%) except for estimate of Bmax using NLR
(<8%). SNLR showed higher parameter precision than NLR. If
BEV is ignored in estimation of parameters both NLR and SNLR
demonstrate reasonably comparable increases in bias of
parameters. The inclusion of BEV parameters in SNLR estimation
provided substantially decreased bias in estimates and improved
precision of parameter estimates (Fig. 1).

Optimization of the design setup demonstrated that a reduced total
number of samples provided relatively the same information as that
with full sampling (Fig. 3). Additionally, optimizing the experimental
design reduced the needed number of different ligand
concentrations (similar to dose groups) from five to two.
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