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Model and data 
Bivariate FEV1 and PRO data obtained with the simulation model created in 
NONMEM are shown in Fig 2. 

 

 

 

 

 

 

 

 

Parameter estimation 

Accuracy and precision in estimated parameters, given alternative model set-ups, are 
shown in Figs. 3A-B.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Power to detect a drug effect  
The power to  detect 3 hypothetical  
drug effects for the base  model with  
π12 and π21 equal to 0.05 and  0.15,  
respectively  can be  seen in  Fig. 4.  
The    BV-MHMM    was   the   most 
powerful model in all cases. 

 

 

 

Model and data 

• BV-MHMMs simulations and estimations were performed in NONMEM 7.3 with the 
following components (Fig. 1): 2 hidden states related to disease activity (1 = non-
active respiratory disease and 2 = active respiratory disease) and 2 measurements 
(FEV1 and a patient reported outcome [PRO] score) related through a bivariate 
normal distribution, including the correlation (ρ). A drug effect was included, 
decreasing the transition rate from state 1 to state 2, π12. A time-constant model 
was used for FEV1, while PRO decreased over time.  Inter-individual variability 
(IIV) was included on π12 and on FEV1 and PRO, separately in each state, 
reported as variance denoted as 𝜔𝐹𝐹𝐹1𝑆2

2  where S1 represents state 1 
(corresponding notation for PRO and state 2). 
 

 

 

 

 

 

 

 

 

• A large data set was simulated (n = 500), where half of the patients received the 
drug and half did not, and where each patient provided 60 weekly observations 
(equidistant and simultaneous) of each variable (FEV1 and PRO).  
 

Parameter estimation with the MHMM 

• Stochastic simulations and estimations (SSE) using PsN [3] were used to 
determine parameter uncertainty in the bivariate MHMM. Different model 
scenarios, with respect to parameter magnitude, were tested, where simulated 
data were estimated with correct models and purposely misspecified models e.g. 
simulated with ρ = 0.33 but estimated with ρ fixed to 0. The focus was on the 
hidden parameters π12 and π21, the drug effect, and all IIV parameters.  
 

Power to detect a drug effect  

• Monte-Carlo mapped power (MCMP) [4] was used to determine the power of the 
bivariate model to detect a drug effect compared with a univariate model accepting 
only FEV1 or PRO observations in PsN. For the MCMP analysis the dataset was 
extended 10-fold (n = 5000) and a 5% significance level was chosen.  

 
 

 A BV-MHMM was implemented in NONMEM allowing for simultaneous estimation 
of two observed stochastic processes and their correlations. 

 Parameters related to hidden processes may be difficult to estimate depending on 
their magnitude. Estimation properties in MHMMs may need to be evaluated on a 
case-by-case basis.  

 Power to detect a drug effect was higher when considering both variables in a BV-
MHMM as compared to univariate models. 
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Hidden-Markov models (HMMs) are a class of statistical models used to characterize 
relationships between observable and unobservable (hidden) stochastic processes. 
HMMs can be extended to include random effects (mixed hidden-Markov models 
(MHMMs) [1]) and to include multiple observation sources as multivariate MHMMs 
(MV-MHMM) [2], the latter allowing to take into account correlation between 
observations. The MV-MHMM may increase power over analyzing data only 
considering univariate observations. 

Introduction 

Results 
 

 

 

 

i) Extend univariate MHMMs presented by Plan. et al. [2] to a bivariate MHMM.  

ii) Examine parameter estimation properties of MHMMs in NONMEM focusing on 
parameters related to hidden processes and correlation between observations.  

iii) Determine the improvement in power to detect a hypothetical drug effect with a 
bivariate model compared with two univariate models.  

Objectives 

Conclusions 
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Figure 1: General bivariate MHMM structure. Random effects and covariates can be added on 
the hidden parameters such as π12 or on the observed processes.  

Figure 2: FEV1 and PRO simulated from the BV-MHMM.  
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Figure 3A: The precision of drug effect improved with increasing drug effect magnitude. In general 
all parameters were more accurately estimated with an increase in transition probabilities. 𝜔𝜋12

2 was 
in general poorly estimated, a result likely connected to the small number of transitions and 
presence of drug effect on π12. 

Figure 3B: The precision of 𝜔𝜋12
2  improved with increasing 𝜔𝜋12

2  magnitude. In general all 
parameters were more accurately estimated with an increase in transition probabilties. Bias of 
𝜔𝐹𝐹𝐹1𝑆2
2  increased when there was no IIV on π12 whereas slight bias in π12 disappeared.  

Figure 4: Power to detect 3 hypothetical drug effects  
for the BV-MHMM and two univariate models. 

Simulated ρ 𝚫𝚫𝚫𝚫∗ [range] 
π12/π21 = 0.05/0.15 

0 +154 [-1108, 1881] 
-0.33 -2981 [-4535, -1486] 

π12/π21 = 0.1/0.3 
0 + 10 [-1493, 1270] 

-0.33 - 2830 [-4031, -790] 

Table 1: Average ΔOFV for full and reduced models. 
 
 
 
 
 
 
 
 
 
 
 
*
 ΔOFV: Difference in OFV between the full model including estimation 
of ρ and the reduced model ignoring the estimation of ρ. 
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Ignoring correlation between the 
observations in the estimation when 
correlation was present (ρ = 0.33) 
resulted in a markedly worse fit as 
indicated by ΔOFV (Table 1).  
Estimating a correlation that was not 
simulated resulted in a range of 100  
ΔOFVs that included 0.    


	Slide Number 1

