Parameter Estimation and Power Calculation with a
Bivariate Mixed Hidden-Markov Model
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Introduction Conclusions

v A BV-MHMM was implemented in NONMEM allowing for simultaneous estimation
of two observed stochastic processes and their correlations.

Hidden-Markov models (HMMs) are a class of statistical models used to characterize
relationships between observable and unobservable (hidden) stochastic processes.

HMMs can be extended to include random effects (mixed hidden-Markov models v Parameters related to hidden processes may be difficult to estimate depending on
(MHMMs) [1]) and to include multiple observation sources as multivariate MHMMSs their magnitude. Estimation properties in MHMMs may need to be evaluated on a
(MV-MHMM) [2], the latter allowing to take into account correlation between case-by-case basis.

observations. The MV-MHMM may Iincrease power over analyzing data only v' Power to detect a drug effect was higher when considering both variables in a BV-

considering univariate observations. MHMM as compared to univariate models.

Objectives Results
)  Extend univariate MHMMs presented by Plan. et al. [2] to a bivariate MHMM. Model and data
) Examine parameter estimation properties of MHMMs in NONMEM focusing on Bivariate FEV1 and PRO data obtained with the simulation model created In
parameters related to hidden processes and correlation between observations. NONMEM are shown in Fig 2.
: : : : i Hidden-Markov state: — Active disease —Non-active disease
i) Determine the improvement in power to detect a hypothetical drug effect with a e s
nivariate model compared with two univariate models. 5l
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Model and data =
« BV-MHMMSs simulations and estimations were performed in NONMEM 7.3 with the 5

following components (Fig. 1): 2 hidden states related to disease activity (1 = non- D 20 40 ] (Wgeks) 20 40 60
active respiratory disease and 2 = active respiratory disease) and 2 measurements

Figure 2: FEV1 and PRO simulated from the BV-MHMM.
(FEV1 and a patient reported outcome [PRO] score) related through a bivariate Parameter estimation

normal distribution, including the correlation (p). A drug effect was included, Accuracy and precision in estimated parameters, given alternative model set-ups, are
decreasing the transition rate from state 1 to state 2, ,,. A time-constant model shown in Figs. 3A-B. < Base mocel (Droe ffet - 11 Dre efect 26 Dru afect 2
ase mode rug errect = rug erec rug erect X
was used for FEV1, while PRO decreased over time. Inter-individual variability rer)7ian = 0.05/0.15 rer /7o = 0.1/0.3
(IIV) was included on T, and on FEV1 and PRO, separately in each state, 200
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reported as variance denoted as wZp s, Where S1 represents state 1
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(corresponding notation for PRO and state 2).
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Nl Figure 3A: The precision of drug effect improved with increasing drug effect magnitude. In general
ay CU,-)l all parameters were more accurately estimated with an increase in transition probabilities. w%,,was
- Tl In general poorly estimated, a result likely connected to the small nhumber of transitions and
2 ] O presence of drug effect on 1,.,.
4
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Figure 1. General bivariate MHMM structure. Random effects and covariates can be added on
the hidden parameters such as 11, or on the observed processes.
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A large data set was simulated (n = 500), where half of the patients received the
drug and half did not, and where each patient provided 60 weekly observations

Relative error (%)
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(equidistant and simultaneous) of each variable (FEV1 and PRO).

"\ Iq, N q, "%;q, Vv N 9 N YV q’,{\\m
N Qﬁ\)q é{\e; g{({{r\,\@ gﬂ@\,@ g&o@ L%QQ*O@ S & N QQ)Q’ @ g@@ g{(@,\@ g&o@ L%QQ‘O% Q
Parameter estimation with the MHMM Figure 3B: The precision of w?2,, improved with increasing w?2,, magnitude. In general all
_ _ _ _ _ _ parameters were more accurately estimated with an increase in transition probabilties. Bias of
« Stochastic simulations and estimations (SSE) using PsN [3] were used to w?zy1s, increased when there was no 11V on 11, whereas slight bias in T,, disappeared.

determine parameter uncertainty in the bivariate MHMM. Different model

. . . . Ignoring  correlation between the 1,pe 1: Average AOFV for full and reduced models.
scenarios, with respect to parameter magnitude, were tested, where simulated

_ | | B observations Iin the estimation when = Simulated p AOFV* [range]
d.ata were e§t|mated with correct. models f';md pL.eroser misspecified models e.qg. correlation was present (p = 0.33) 112/1121 = 0.05/0.15
S|.mulated with p = 0.33 but estimated with p fixed to 0. The focus was on the resulted in a markedly worse fit as 0 +154 [-1108, 1881]
hidden parameters 11,, and 1,,, the drug effect, and all IV parameters. ndicated by AOFV (Table 1). -0.33 n12/n2-i9—8(1) [1-2)525, -14386]
Estimating a correlation that was not 0 +10 .[_14.93, 1270]
Power to detect a drug effect simulated resulted in a range of 100 0.33 - 2830 [-4031, -790]
e Monte-Carlo mapped power (MCMP) [4] was used to determine the power of the AOFVs that included O. ofASZXd Jmerence I OF Y ?gerfgvﬁr?g“ tLheeef;'i'm”;figﬁ';P;'_“dmg estimation
bivariate model to detect a drug effect compared with a univariate model accepting 100
only FEV1 or PRO observations in PsN. For the MCMP analysis the dataset was Power to detect a drug effect -
extended 10-fold (n = 5000) and a 5% significance level was chosen. The power to detect 3 hypothetical g " j;azat:ei FEVI)
drug effects for the base model with % *0]
References: T, and 1,, equal to 0.05 and 0.15, g :§EE§ EEEEEES
[1] Altman RMK. Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting. JASA. 2007. respectively can be seenin Fig. 4. N
3] Keizer R, Karlason MO, Hooker A. Modeling and Simulation Workbench for NONMEN: Tutoril on Pirana, ok, and xpose. CPT | The BV-MHMM was the most " samplesize
;?avrorﬁzcgmsgﬁgztfﬁ II:\)/Ir?al\rlr;k?eCr(; f,oriz}lszéiioﬁ/lo. Rapid sample size calculations for a defined likelihood ratio test-based power in mixed powerful model in all cases. Figure 4: Power to detect 3 hypothetical drug effects

effects models. 2012. AAPS J. Jun:14(2):176-86. for the BV-MHMM and two univariate models.
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