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Nonlinear mixed effect models (NLMEM) are widely used for the analysis of longitudinal data. Longitudinal data include continuous measures but also discrete measures such as binary, ordinal or count data. To evaluate and
compare NLME designs, the Fisher information matrix (FIM) can be used as its inverse is the lower bound of the variance covariance matrix of any unbiased parameters estimator according to the Cramer-Rao inequality. However,
in NLMEM, the Fisher information matrix has no analytical form and its calculation, which require multiple integrations, can be challenging. Therefore, an expression based on first-order linearization (FO) around the expectation
of the random effects was proposed by Mentre et al. In recent years, estimation algorithms for NLMEMs have transitioned from linearization-based approaches towards more exact higher-order methods. Optimal design, on the
other hand, has mainly relied on FO to calculate the expected FIM. Although very efficient in general, FO precludes the application of optimal design with complex non-linear models and in studies with discrete endpoints. The
objective of this work was to apply integration algorithms, which have proven to be efficient for estimation, to evaluate the asymptotically exact FIM in NLMEM for both discrete and continuous outcomes.

Introduction

Nonlinear mixed effect models

. For continuous data: yi = f (g(µ, bi), ξi) + εi

. For discrete data: P (yi|bi) =
ni∏
j=1

h(yij, g(µ, bi), ξi)

with

yi response for individual i

f , h structural model

ξi elementary design for subject i

g individual parameters vector, function of µ and bi

µ vector of fixed effects

bi vector of random effects for individual i,
bi ∼ N (0,Ω)

Ω variance-covariance matrix

εi vector of residual errors, εi ∼ N (0,Σ)

Σ is a diagonal matrix

Fisher Information Matrix
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Markov Chains Monte Carlo - MCMC

FIM: After calculation, (k, l) term of the FIM ⇐⇒∫
y
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Monte Carlo - MC Markov Chains Monte Carlo - MCMC

Partial derivatives calculation:

• By hand. For example, for continuous data:
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with Eb = f (g(µ, b), ξ) and Vb = Σ

•Using STAN: MCMC sampler, calculate directly the partial derivatives (for all types of outcome)

Adaptive Gaussian Quadrature - AGQ
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Monte Carlo - MC Adaptive Gaussian Quadrature - AGQ

Partial derivatives calculation: Finite differencing

Methods

We compared 3 approaches to evaluate the FIM: MCMC-based approach, AGQ-based approach and Linearization (FO), with clinical trial simulations (CTS). We used several criteria: the RSE / RRMSE, and the normalized
determinant of the FIM / normalized determinant of the inverse of the observed variance-covariance matrix, and also investiagted computation time. We used two continuous examples: a pharmacokinetics Warfarin model (PKW),
and an Emax dose-response model (SC1); as well as two discrete examples: a logistic model for longitudinal binary outcome (LLB), and an exponential model with constant hazard for repeated time-to-event (RTTE).

PKW: One compartment model with first order
absorption and elimination:

f (φ = (ka, V, CL), t) = 70
V

ka
ka−CL

V

(
e−

CL
V
t − e−kat

)
• Fixed effects: (µka, µV , µCL) = (1.00, 8.00, 0.15)

• Exponential random effects with variances:
(ω2

ka
, ω2

V , ω
2
CL) = (0.60, 0.02, 0.07)

• Proportional residual error: σslope = 0.1

• 8 times: t = (0.5, 1, 2, 6, 24, 36, 72, 120)

•N = 32 patients

LLB: Probability of “one-response” at time t for
group δ:

P (y = 1|b) =
exp(β1 + β2(1− µ3δ)t)

1 + exp(β1 + β2(1− µ3δ)t)

• Fixed effects: (µ1, µ2, µ3) = (−1.0, 4.0, 0.4)

•Additive random effects with variances:
(ω2

1, ω
2
2) = (0.5, 4.0)

• 2 groups: δ = 0 and δ = 1

• 13 time points equally spaced between 0 and 1
time units for each patient

•N = 25 patients per group

RRTE: Exponential distribution for repeated
time-to-event with constant hazard:

P (y|b) = λ1 exp(−λ1t)

• Fixed effects: µ1 = 1.0

• Exponential random effects with variances:
ω2

1 = 0.1

• 10 repeated measures per patient

•N = 50 patients

SC1: Sigmod Emax model:

f (φ = (Emax, ED50), d) = E0 +
Emaxd

γ

EDγ
50 + dγ

• Fixed effects: (µE0
, µEmax

, µED50
, µγ) = (5, 30, 500, 3)

• Exponential random effects with variance-covariance:

Ω =


0.09 0.06 0.06 0
0.06 0.09 0.06 0
0.06 0.06 0.09 0

0 0 0 0.09


• Combined residual error: (σinter, σslope) = (0.2, 0.2)

• 4 doses: d = (0, 100, 300, 1000)

•N = 100 patients

det(FIM)
1
p Time

PKW LLB RTTE SC1 PKW LLB RTTE SC1
CTS 1116 7 526 177 >5h >5h >5h >5h

MCMC 1122 8 370 146 ≈ 6min ≈ 10min ≈ 2min ≈ 10min
AGQ 1088 8 464 149 ≈ 2min ≈ 2min ≈ 10s ≈ 13min
FO 1133 - - 104 <5s - - <5s

Results: Both AGQ and MCMC-based approaches showed good performance on scenarios for continuous outcomes with RSEs close to the
RRMSEs obtained by simulations. In general, RSE predicted by linearization gave close results for rich designs, but showed larger deviations
for sparse designs and very non-linear models. On the contrary to FO, AGQ and MCMC can be applied to discrete data and showed good
performance. Computation of the FIM with AGQ took only seconds for models with few random effects, but time computation increases
exponentially with the number of random effects and models with more than 4 random effects became infeasible. The MCMC approach on
the other hand was slower than AGQ for simple models, but can be applied to complex ones with similar time calculation.

Simulation and Results

Two complementing methods for calculating the exact FIM were proposed and evaluated. Both approaches showed similar performance in terms of RSE for model with continuous and discrete data. AGQ is a fast algorithm that
can be used for simple models. MCMC suited even for large complex models where FO fails to correctly evaluate the FIM. We developped two R packages that will be soon available.

Conclusion


