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Model order reduction

Starting from a large / complex mathematical model, Model Order
Reduction provides a mathematical transformation such that a

smaller in size system is produced but with effectively the same
input — output behaviour

Several methods for model order reduction

e Elimination of states

e Time scale separation

e Lumping (merging of states) w



Motivation / potential applications

In Pharmacokinetics
PBPK models
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Lumping as a method for model order reduction

A formal way for model order reduction by merging together some of
the system’s states thus reducing its size.

Generalised lumping
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The states of the reduced system
are linear combinations
(or even non linear functions)

of the states of the original system.

Proper lumping g
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Each state of the original system
is included only in one state of
the reduced system, retaining
physical meaning.



Dynamical systems
A dynamical system described by a set of ODEs is

dy

-1

Where y are the states of the system

The observables of the systems are given by a transformation of the states
we assume a linear transformation

C=a-y
In a compartmental system the states are the amounts A

while the proportionality constants “a” relate the amounts to the observable
concentrations and are:



The lumping matrix M

A dynamical system

dy
E—f()’)

can be lumped such that
y =My
where M is the lumping matrix consisting of 1s and 0s.

Then a new set of ODEs is produced

a9 _ .
= =f®



Lumping of a 3-compartment mammillary model to 2-compartment
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A2 Al A3
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dA
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Note that for proper lumping there is only one “1” in each column
because each of the original states contributes to one final state only



The inverse transformation

Apart from the lumping transformation
y =My
We also have the inverse transformation
y=M"y

where M is the pseudo-inverse of M, such that MM*=I.

There are infinite matrices with this property but we choose
the Moore—Penrose pseudo-inverse which is the most commonly used

It is can be calculated numerically and is readily available in various
software packages e.g.:

MATLAB pinvQ

Mathematica Pseudolnverse[]
S-Plus/R ginv()



Back to lumping the 3-compartment model to 2-compartment

1 0
M=(é (1’ (1’) M+=[0 1/2
0 1/2
. (10
MM _(O 1)
A=M*A
Ay 1 0 R A
A, A
A, l=[0 1,2 <>: Ay/2
As 0 1/2) ) \z )

One can go back to the original configuration
but will not get back the original information
Compression is “lossy”



Main lumping formula for the linear system

dy hat is R 2
I = what IS !
. . dy
Multiply both sides by M ME =M-K-y
+ A dy A
Replace y =Mty ME=M-K-M+y
d ~
But cd =d_y
dt dt

So finally ay =
dt
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Back to lumping the 3-compartment model to 2-compartment

—(kqp + ki3 + ko) ko1 k3,
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kor = (ky1tksy)/2

when k,,=k,; and k,,=k;,
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Lumping scheme is good locally in the parameter space
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Lumping of a 3-compartment catenary model to 2-compartment

Aq Ay ¢ Aq

—(kq2 + ko) k21 0
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~ TAY > A
k12 — k12 Al A2:2A2

exact when k,; and k;, are very large such that A, and A; equilibrate instantly

V2=V2+V3
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Compartments in series can be lumped
when they equilibrate fast

- Compartments in parallel can be lumped

when they have similar times scales

Journal of Pharmacokinetics and Biopharmaceutics, Vol. 26, No. 1, 1998
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Lumping of a PBPK model to 2-compartment
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The main lumping formula for nonlinear systems

dy
Given the system dt =f)

And the lumping matrix M such that y = My

" dy R
we need to determine f(¥) such that d_}t, = f(9)

dy o dy Ly 3
E—f()’) ME—Mf(}’) E—Mf(M ¥)

f@) =Mf M*9)

special case of a linear model where f(y) = Ky

f(®) =Ry = MKM*§ ———> R =MKM*
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A useful property

~

Time

Assuming that “good” lumped models
produce the same output...

... the order in which the lumps
are considered does not matter



Automatic lumping algorithm outline
Search for optimal M: Try them all

Consider an initial list of all lumpable pairs of states

Consider all the combinations of these for the desired size of reduced
system

For each combination construct the appropriate lumping matrix M
Solve numerically the lumped model using the formula f(9) = Mf (M*9)

Compare the profile to the profile of the original model (already available)
using an objective function

Repeat the procedure for all combinations and find the lumping scheme
with the smallest objective function.



Problem: Combinatorial explosion
Assume that the model is of dimension n and any state can be lumped with
any other state (co constraints at all).

Then there are n(n-1)/2 pairs of states that may be lumped, which means that
to lump the model by one we need to make n(n-1)/2 function calls.

But if we want to reduce the system by k then the possible combinations are

n(n — 1)/2) (n(n—1)/2)!

k Tk (n(n—1)/2 - k)!

binomial coefficient: (

For example for n=30 and k=20 we have about 1034 combinations



Automatic lumping algorithm outline
Search for optimal M: Try one at a time

Consider an initial list of all lumpable pairs of states

Consider all the combinations of these for size of reduced system n-1

For each combination construct the appropriate lumping matrix M

Solve numerically the lumped model using the formula f(9) = Mf (M*9)

Compare the profile to the profile of the original model (already available)
using an objective function

Repeat the procedure for all combinations and find the lumping scheme
with the smallest objective function. (Inner loop: parallelizable)

Go to step 2 and repeat until desired dimension of the reduce systems is
reached (outer loop)

This is going to cost us less than %k(k2 — 2kn + 2n? — 1) function calls,

for example for n=30 and k=20 its 4330 combinations instead of 1034
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Kay:

K: final nasber of lumps (ingput)

L: current lump (L=0)

LOL: list of lumps

LS: lumping scheme (LS=empty)

M. lusping mateis

NINL: lusp with min. obiective functisa
MNINOF: min. obj. func. OMINOP=infinite)
NL: current number of lumps (NL=0)

oF: cbjective functioa

P :Outer loop
Bl :inner loop



Objective function

Sum of squares of the distances of all the states of the reduced and the original
model, normalised.

0=y j E=ap

=1

This is only indicative. Alternative objective functions that do feature matching
or any appropriate similarity criterion.

The above function assumes that there is equal interest in all states of the
model. This is unlikely, so weights can be introduced to favour the most
interesting states.



Constraints

It is reasonable to introduce constraints

Exclude specific combinations or consider only specific combinations,
e.g. taken from the stoichiometry matrix of the system.

Force states of particular interest to be left unlumped

These are determined by a matrix
(in graph theory terminology an incidence matrix or adjacency matrix):
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Locality
All model reduction techniques produce results which
are valid only locally in the parameters space.
This means that are good only for a specific set of parameter values.

As in the 3-compartment example the lumping is meaningful only when the
rate constants are similar or ideally equal.

k21 k13

Kip

when k,,=k,; and k,,=k;,




Incorporation of uncertainty

But in most cases in biological networks parameter values are uncertain
To address this problem a Bayesian objective function may be considered

that incorporates parameter uncertainty and averages over prior parameter
distributions.

A Bayesian objective function may look like this:

dBayes = j (P(6)d)do

prior
where d is a value of a local objective function.

In this case the lumped model is not the optimal one for any parameter set
but it the optimal one on average, given the parameter distributions
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Application to a coagulation model for warfarin and enoxaparin

Preliminary results by Abhishek Gulati
(Steve Duffull’s PhD student in Otago)
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Original Coagulation Model

62 compartments
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Lumped Coagulation Model
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Lumped Coagulation Model

Lumped 1 Lumped 2 Lumped 3 Lumped 4 Lumped5 Cmpts 6 to 22 (unlumped)
APC Xl XF Taipan Tiger absorption warfarin absorption
Tmod Xla D-dimers delay taipan 1 Tiger plasma warfarin plasma
lla:Tmod Xl FDPs delay taipan 2 Xa VK
APC:PS Xlla XaVa VKH2
LMWH absorption Pk brown snake absorption VKO
LMWH central K brown snake plasma Vkperi
LMWH peripheral TAT Il
UFH ATII VII
kaolin X IX
Vv Xllla X
Va plasminogen PC
Vila plasmin PS
VII-TF fibrinogen
Vila-TF fibrin
TFPI integral fibrin
Xa-TFPI lla
Vlla-TF-Xa-TFPI TF
VIII
Vlilla
IXa

IXaVllla



Comparison of original and lumped models
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Conclusions

Lumping can be a useful technique to reduce the size of a system

Automation is possible but it is important to select carefully the
criteria and the constrains

Main drawback is locality and one should check for robustness
depending on the scope (speed, controller, identification, etc)
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