SOFTWARE FOR OPTIMAL DESIGN IN POPULATION PKPD: A COMPARISON

France Mentré¹, Stephen Duffull², Ivelina Gueorguieva³, Andy Hooker⁴, Sergei Leonov⁵, Kayode Ogungbenro⁶, Sylvie Retout¹

1. INSERM U738, University Paris 7, Paris, France
2. School of Pharmacy, University of Otago, Dunedin, New Zealand
3. Global PK/PD, Lilly Research Centre, Windlesham, UK
4. Dpt of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
5. GlaxoSmithKline Pharmaceuticals, Collegeville, PA, USA
6. Center for Applied Pharmacokinetic Research, School of Pharmacy, University of Manchester, Manchester, UK
OUTLINE

1. Population design
2. Software tools
3. Comparison
4. Conclusions
1. POPULATION DESIGN
Population PK/PD

- Population PK/PD studies increasingly performed during drug development

- Several methods/software for maximum likelihood estimation of population parameters using NonLinear Mixed Effects Models (NLMEM)
 - NONMEM
 - Splus/R: nlme, SAS: Proc NLINMIX
 - MCMC estimation methods: SAEM (MONOLIX), MC-PEM,…

- Problem beforehand: choice of population design
 - number of patients?
 - number of sampling times?
 - sampling times?

- Recommendations on design in the FDA guidance
Statistical estimation

Statistics:

1. Inference
 - hypothesis testing
 - estimation
 - prediction

2. Planning = find ‘optimal’ design given
 - objective (e.g.: estimation)
 - statistical method (e.g.: maximum likelihood)
 - experimental constraints
 - some prior knowledge on expected results (e.g.: models and parameters)
Evaluation of population designs

- Compare designs
 - predicted standard errors of each population parameter

- Optimal design
 - smallest estimation variance
 - greatest information in the data

- Two approaches
 - simulation studies
 - mathematical derivation of the Fisher Information matrix (MF)
 - Cramer-Rao inequality: MF^{-1} is the lower bound of the estimation variance
Fisher Information Matrix

- Problem in NLMEM because no analytical expression of the likelihood
 - Evaluation of MF using first order linearisation
 - (see other references at the end)

- Since first theoretical work
 - Several statistical developments by different teams
 - Applications in drug development, in clinical pharmacology
 - Several software tools
Population Optimum Design of Experiments (PoDe)

- Creation of a multidisciplinary group: PODE
 - initiated by Barbara Bogacka (School of Mathematical Sciences, University of London)
 - discuss theory of optimum experimental design in NLMEM and their application in drug development
 www.maths.qmul.ac.uk/~bb/PODE/PODE2007.html

- One day workshop
 - May 2006: London, University of London (B. Bogacka)
 - May 2007: Sandwich, Pfizer (P. Johnson)
 - special session on software tools and their statistical methodology
2. SOFTWARE TOOLS
(alphabetical order)
PFIM and PFIM interface

- Developed by Sylvie Retout and France Mentré
 - INSERM & University Paris 7
 - Other participants: Emmanuelle Comets, Hervé Le Nagard, Caroline Bazzoli

- Population Fisher Information Matrix

- Use R

- Available at www.pfim.biostat.fr

- History of PFIM
 - 2001: PFIM 1.1 similar in Splus and Matlab (S. Duffull)
 - 2003: PFIM 2.1 and PFIMOPT 1.0
 - June 2007: PFIM Interface 2.0 (evaluation and optimisation)
 - Soon PFIM 3 (beta version) and PFIM Interface 3
PFIM Interface 2.0

Input Design

- Dose regimen:
 - Identical dose in each elementary design
 - Dose: 100

Initial population design

- Number of groups: 2
- Subjects are given as: Numbers

Initial population design

- 0.0625, 7, 14, 20.58
- 0.0625, 12, 20

Initial proportions or numbers of subjects per group

- 1, 90, 30
Developed by Sergei Leonov
 ● Research Statistics Unit, GlaxoSmithKline
 ● Other participants: Bob Gagnon, Brian McHugh, Valerii Fedorov

- **Sampling Times Allocation - Matlab Platform**
- **Or STand Alone - Matlab Platform**
 ● (no need of Matlab)
 ● free Matlab Component Runtime environment

- Not available outside GSK
PopDes

- Developed by Kayode Ogungbenro, Ivelina Gueorguieva and Leon Aarons
 - CAPKR, University of Manchester

- Population Design

- Matlab platform
- Available at www.capkr.man.ac.uk/PopDes
- Since April 2007 (on website)
PopDes

User Interface:
- **Design Options**
 - Individual
 - Population
 - Uniresponse
 - Multiresponse
 - Local
 - Bayesian
- **Parameters**
 - **Model**
 - Library
 - One compartment IV bolus
 - External
- **Efficiency**
 - Efficiency of a User-Specified Design
 - User Design
 - **Sampling Windows Calculation**
 - % Efficiency
 - Uniform
 - Initial Guess of Sampling Windows Half Length
 - **Optimisers**
 - Exchange step size
 - Hybrid
 - Simplex
 - **Sampling Windows Evaluation**
 - Efficiency of User-Specified Windows
 - User Windows
 - Uniform
 - **Solve & Save**
PopED

- Developed by Andy Hooker, Joakim Nyberg, Mats Karlsson
 - Uppsala University
- Population optimal Experimental Design
- Matlab platform
 - O-matrix with previous versions (University of Washington, Paolo Vicini)
- Matlab version available
 - by request andrew.hooker@farmbio.uu.se
 - soon (July 2007) from www.sourceforge.net
- Previous O-matrix version available
 - depts.washington.edu/rfpk/rd/software_popED.html
 - since March 2003
PopED

Optimization settings
- Optimization method: D-Optimal
- Search Type:
 - Random Search
 - Stochastic Gradient
 - Line Search

Design parameters
- Use grouping
- Number of groups: 3
- Max number of samples/group: 3
- Min number of samples/group: 1
- Num individuals in each group:
 - Group 1: 4
 - Group 2: 4
 - Group 3: 4

Tasks to optimize
- Samples per Subject
- Sampling Schedule
- Number of individuals per group
- Covariates
- Other variables

Model size
- Number of Pop in model: 3
- Number of random effects in model: 3
- Number of covariates in model: 1
- Number of other design-variables in model: 0

Model name:
Theophylline Time and Dose

Model description:
Optimization of Theophylline (1 comp model with linear absorption). Optimizing on Dose and Time at the same time. Only PK optimization.
POPT and WinPOPT

- Developed by Stephen Duffull
 - University of Otago (NZ), University of Queensland, Johnson & Johnson
 - Other participants: Nick Denman, Hui Kimko, John Eccleston
- Matlab platform
- For WinPOPT:
 - stand alone version (no need of Matlab)
 - free Matlab Component Runtime environment
- Available at www.winpopt.com
- POPT: since July 2003
- WinPOPT: since March 2006
WinPOPT
3. COMPARISON

Summary done by France Mentré from slides at PoDe2007 based on currently available versions (June 2007)
Language, availability, interface, models...

<table>
<thead>
<tr>
<th></th>
<th>PFIM</th>
<th>PFIM Int.</th>
<th>PkStaMP</th>
<th>PopDes</th>
<th>PopED</th>
<th>POPT</th>
<th>WinPOPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Retout</td>
<td>Retout</td>
<td>Leonov</td>
<td>Ogungbeno ro</td>
<td>Hooker</td>
<td>Duffull</td>
<td>Duffull</td>
</tr>
<tr>
<td>Language</td>
<td>R</td>
<td>R</td>
<td>Matlab CR</td>
<td>Matlab</td>
<td>Matlab O matrix</td>
<td>Matlab</td>
<td>Matlab CR</td>
</tr>
<tr>
<td>Available on website</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>GUI</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Library of PK models</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi response models</td>
<td>No*</td>
<td>No*</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Evaluation of information matrix

<table>
<thead>
<tr>
<th></th>
<th>PFIM</th>
<th>PFIM Int.</th>
<th>PkStaMP</th>
<th>PopDes</th>
<th>PopED</th>
<th>POPT</th>
<th>WinPOPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical derivatives</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ODE Models</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Off-diagonal terms in MF</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Full covariance matrix Ω</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Designs differ across responses</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Optimisation

<table>
<thead>
<tr>
<th></th>
<th>PFIM</th>
<th>PFIM Int.</th>
<th>PkStaMP</th>
<th>PopDes</th>
<th>PopED</th>
<th>POPT</th>
<th>WinPOPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact Design</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Statistical Design</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Constraints</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Algorithm</td>
<td>Simplex</td>
<td>Simplex</td>
<td>Fedorov - Wynn</td>
<td>Simpex Exchange</td>
<td>Stochastic gradient</td>
<td>Simulated annealing Exchange</td>
<td>Simulated annealing Exchange</td>
</tr>
<tr>
<td>Design Structure</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Bayesian design (ED)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sampling Windows</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Future developments

- All software tools have ongoing development that should fill the gap with the others.
- Some have other specific features:
 - See documentation or slides at PoDe2007.
- Other statistical developments:
 - Models with covariates.
 - Models with inter-occasion variability.
 - …
- Main limitation:
 - First-order approximation:
 - Simulation results: closer to FOCE and SAEM than to FO.
 - Exact evaluation of MF: stochastic approach or Gaussian quadrature.
4. CONCLUSIONS
1. Start a distribution list: PopDesign
 - organised by S. Duffull
 - to register: http://lists.otago.ac.nz/listinfo/popdesign
 - to send an email: popdesign@lists.otago.ac.nz
 - any questions/comments on design in NLMEM and software tools
 - answers by all members of PoDe

2. Start a discussion ‘Would it be possible to combine all software tools in one for future developments?’
 - to be organised by A. Hooker & F. Mentré
 - role of nlme consortium?
Conclusion

- Results of population PK/PD analyses increasingly used
 - in drug labeling
 - in test of covariates
 - for clinical trial simulation
 ➔ Informative studies with small estimation error

- Evaluation and comparison of population designs without simulation using statistical approach

- Results show that design may CONSIDERABLY affect precision of estimation

SPARSE-SAMPLING DESIGN = BEST INFORMATION NEEDED

- Several software tools available: no excuses!
 - define good population designs (ethical/financial reasons)
 - anticipate fatal population designs
Several Methodological References (1)

PFIM

Several Methodological References (2)

- **PkStaMP**
Several Methodological References (3)

PopDES

Several Methodological References (4)

PopED

Several Methodological References (5)

- **POPT/ WinPOPT**