

Performance of npde for the evaluation of joint models with time to event data M. Cerou^{1,3}, S. Peigné³, M. Chenel³, E. Comets^{1,2}

¹ Inserm, IAME, University Paris Diderot, Paris, France
² Inserm, CIC 1414, University Rennes 1, Rennes, France
³ Division of clinical pharmacokinetics and pharmacometrics, Servier, France

PAGE meeting – Stuart Beal methodology session June, 13th 2019

Infection • Antimicrobials • Modelling • Evolution

Context

- Nonlinear Mixed Effect Models (NLMEM) increasingly more sophisticated
- Model evaluation
 - assessing the adequacy between the tested model and the data
 - important part in model development [1,2,3]
 - graphical and statistical methods available for continuous data
 - recommended methods include visual predictive check (VPC) and npde as a gold standard [4]

Brendel K et al. Clin Pharmacokinet. 2007
FDA 1999
EMA 2006
Nguyen THT et al. CPT Pharmacometrics Syst Pharmacol. 2017

Joint models

- Processes of interest are followed throughout clinical trials
- Typically in oncology with biomarkers (e.g. PSA, SLD) and time-toevent (e.g. death, relapse)
- Joint models provide a promising statistical framework to estimate this association
- Support clinical decisions and treatment choices
- Increased use of joint models [1,2] with NLMEM
- How to extend npde for the evaluation of joint models ?

Outline

- Development of npde for the evaluation of **joint model** with longitudinal and time-to-event (TTE) data
- Performance of the statistical test
- How can we visually diagnose model deficiencies ?

Statistical model

- y_{ij} is the jth continuous observation for subject i at time t_{ij}
- T_i is the time to first event
- Model for continuous data
 - $y_{ij} = \mathbf{f}(\theta_i, t_{ij}) + \mathbf{g}(\theta_i, t_{ij}, \sigma) e_{ij}$, with $e_{ij} \sim \mathcal{N}(0, 1)$ and g the error model
 - $\theta_i = \mathcal{D}(\mu_L, \eta_i)$ with μ_L the fixed effects and η_i the random effects $(\eta_i \sim \mathcal{N}(0, \Omega))$
- Dependency between observations: conditional independence with respect to random effects
- Model for TTE data
 - $h_i(t|\theta_i) = h_0(t) \times \exp(\beta_L \cdot l(\theta_i, t))$
 - with β_S the vector of parameters of the baseline hazard function h_0 , and β_L which represents the strength of the link between $l(\theta_i, t)$ and the hazard
 - $\mu_{TTE} = \{\beta_S, \beta_L\}$
- $\Psi = \{\mu_L, \mu_{TTE}, \Omega, \sigma\}$

Development of npde for continuous data ^[1]

$$pd_{ij} = F_{ij}(y_{ij}) = \int_0^{y_{ij}} p_i(y, \Psi) dy = \int^{y_{ij}} \int p(y|\boldsymbol{\theta}_i) p(\boldsymbol{\theta}_i) d\boldsymbol{\theta}_i dy$$

- prediction discrepancies **pd**: quantile of an observation in its predictive distribution
- prediction distribution error **pde**: quantile of a <u>decorrelated</u> observation in its <u>decorrelated</u> predictive distribution
- normalised prediction distribution npd: <u>normalization</u> of pd
- normalised prediction distribution error **npde**: <u>normalization</u> of pde

Development of npde for continuous data ^[1]

$$pd_{ij} = F_{ij}(y_{ij}) = \int_0^{y_{ij}} p_i(y, \Psi) dy = \int^{y_{ij}} \int p(y|\boldsymbol{\theta}_i) p(\boldsymbol{\theta}_i) d\boldsymbol{\theta}_i dy$$

- prediction discrepancies **pd**: quantile of an observation in its predictive distribution
- prediction distribution error **pde**: quantile of a <u>decorrelated</u> observation in its <u>decorrelated</u> predictive distribution
- normalised prediction distribution npd: <u>normalization</u> of pd
- normalised prediction distribution error **npde**: <u>normalization</u> of pde

Development of npde for continuous data ^[1]

$$pd_{ij} = F_{ij}(y_{ij}) = \int_0^{y_{ij}} p_i(y, \Psi) dy = \int^{y_{ij}} \int p(y|\boldsymbol{\theta}_i) p(\boldsymbol{\theta}_i) d\boldsymbol{\theta}_i dy$$

- prediction discrepancies **pd**: quantile of an observation in its predictive distribution
- prediction distribution error **pde**: quantile of a <u>decorrelated</u> observation in its <u>decorrelated</u> predictive distribution
- normalised prediction distribution npd: <u>normalization</u> of pd
- normalised prediction distribution error **npde**: <u>normalization</u> of pde

- Time to event (T_i) is continuous
- pd for observed event time:
 - $pd_i = F_i(T_i) = \int_0^{T_i} p_i(t, \Psi) dt = \int_0^{T_i} \int p(t|\boldsymbol{\theta}_i) p(\boldsymbol{\theta}_i) d\boldsymbol{\theta}_i dt$

- Time to event (T_i) is continuous
- pd for observed event time:
 - $pd_i = F_i(T_i) = \int_0^{T_i} p_i(t, \Psi) dt = \int_0^{T_i} \int p(t|\boldsymbol{\theta}_i) p(\boldsymbol{\theta}_i) d\boldsymbol{\theta}_i dt$
- Time to event (T_i) can be censored (right / left / interval censored event)
 - How to deal with censoring ?

- Time to event (T_i) is continuous
- pd for observed event time:
 - $pd_i = F_i(T_i) = \int_0^{T_i} p_i(t, \Psi) dt = \int_0^{T_i} \int p(t|\boldsymbol{\theta}_i) p(\boldsymbol{\theta}_i) d\boldsymbol{\theta}_i dt$
- Time to event (T_i) can be censored (right / left / interval censored event)
 - How to deal with censoring ?
- pd for censored event time: same idea as [1] with npde for BLQ data:
 - T_i lies within the interval $[T_{L_i}; T_{R_i}]$
 - $pd_i = U(F(T_{L_i}), F(T_{R_i}))$

- Time to event (T_i) is continuous
- pd for observed event time:
 - $pd_i = F_i(T_i) = \int_0^{T_i} p_i(t, \Psi) dt = \int_0^{T_i} \int p(t|\boldsymbol{\theta}_i) p(\boldsymbol{\theta}_i) d\boldsymbol{\theta}_i dt$
- Time to event (T_i) can be censored (right / left / interval censored event)
 - How to deal with censoring ?
- pd for censored event time: same idea as [1] with npde for BLQ data:
 - T_i lies within the interval $[T_{L_i}; T_{R_i}]$
 - $pd_i = U\left(F(T_{L_i}), F(T_{R_i})\right)$

Computation of the combined test for joint model

- Computing npd / npde
 - npde for continuous data obtained as previously by decorrelating the observed and simulated continuous response
 - **npd** for TTE obtained using the inverse normal function of the pd (only one observation)
- Combined statistical test
 - Pr(reject $H_0 \mid npde^{(1)}$) with a Kolmogorov-Smirnov (KS) test of normality $\mathcal{N}(0,1)$
 - Pr(reject $H_0 | npd^{(2)}$) with a KS test of normality $\mathcal{N}(0,1)$
 - **Bonferroni correction**: $Pr(reject H_0) = min(Pr(reject H_0 | npde^{(1)}); Pr(reject H_0 | npd^{(2)})) \times 2$
 - > rejection if $Pr(reject H_0) < 0.05$

Outline

- Development of npde for the evaluation of joint model with longitudinal and TTE data
- Performance of the statistical test
- How can we visually diagnose model deficiencies ?

Simulation study - Model

- Inspired from the work of Desmée et al. [1]
 - metastatic castration-resistant prostate cancer patient
 - original design based on a clinical trial
- Data:
 - primary outcome: survival
 - biomarker: Prostate Specific Antigen (PSA)

Model for PSA: biexponential

Model for the TTE outcome:

• $h_i(t|\theta_i) = \frac{k}{\lambda} \left(\frac{t}{\lambda}\right)^{k-1} \times \exp(\beta \cdot \frac{PSA(\theta_i, t)}{PSA(\theta_i, t)})$

Parameters	Distribution	Value	i.i.v (ω)
r (day⁻¹)	Log-normal	0.05	0.1
PSA ₀ (ng.mL ⁻¹)	Log-normal	80	0.6
З	Logit-normal	0.3	1.5
Tesc (day)	Log-normal	140	0.6
d (day ⁻¹)	-	0.046	
δ (day-1)	-	0.23	
k	-	1.5	-
λ (day)	-	580	-
β	-	0.001	-

Simulation study

Settings

- Misspecification on PSA model parameter
 - ε: {0.15, 0.3, 0.45, 0.6, 0.8}
- Misspecification on TTE model parameter
 - $\beta : \{0, 0.001, 0.003, 0.005\}$
- Design
 - {50, 100, 200} patients
 - follow-up censored at 735 days
 - up to 9 measurements

Simulation study

Settings

- Misspecification on PSA model parameter
 - ε: {0.15, 0.3, 0.45, 0.6, 0.8}
- Misspecification on TTE model parameter
 - β: {0,0.001,0.003,0.005}
- Design
 - {50, 100, 200} patients
 - follow-up censored at 735 days
 - up to 9 measurements

Evaluation criteria

- Notation used:
 - V: dataset generated under model M_V (e.g. $\epsilon = 0.15$)
 - M: model to test (e.g. $\epsilon = 0.8$)
 - H_0 : the data V can be described by the model M
- Performance of npde:

- **type I error**: % of rejection of M under H_0 (M=M_V)
- **power**: % of rejection of M under H_1 (M \neq M_V)

Simulation study – Misspecification on PSA model

Parameter: ε

Simulation study – Misspecification on PSA model

Parameter: ε

Results

Simulation study – Misspecification on PSA model

Parameter: ε

- Type I error: controlled
- Power increases as difference from true value and N increases

Simulation study – Misspecification on TTE model

Parameter: β

- Type I error: controlled
- Power increases as difference from true value and N increases

Outline

- Development of npde for the evaluation of joint model with longitudinal and TTE data
- Performance of the statistical test
- How can we visually diagnose model deficiencies ?

For continuous outcome:

- scatter plot of npd/npde vs time and pred

For TTE outcome:

- time is the predictor itself
- if npd vs time: a trend is expected (population residuals vs. individual observations)

100 L

30

Example of graphs – TTE part

Strength of the impact of PSA on survival (β tested): 0.001

Example of graphs – TTE part

Strength of the impact of PSA on survival (β tested): 0.001

Example of graphs – TTE part

Strength of the impact of PSA on survival (β tested): 0.001

Survival-based Visual Predictive Check

Discussion

- Good performance of the combined test
 - adequate type I error
 - power increases as the difference in shape differs
 - also evaluated in other settings
- Graphs are useful to assess the inadequacies of the model
- More details about the npd for TTE in [I]
 - good performance of npd-TTE evaluated on survival data alone, assuming longitudinal model is correct

Perspectives

- Application on data from a clinical trial
- Comparison of npd-TTE to other diagnostics for survival-type data:
 - Survival-based VPC
 - Hazard-based VPC [1]
 - Kaplan Meier Mean Covariate [2]
- Extension to repeated TTE

[1] Yeamin H and Hutmacher MM. J Pharmacokinet Pharmacodyn. 2016[2] Hooker A and Karlsson MO. PAGE 2012

Acknowledgment

Grant: Servier

EROT

S D

- To my PhD supervisor
 - Emmanuelle Comets
 - Marylore Chenel
- To my Inserm colleagues
- To my Servier colleagues

SERVIER

Infection • Antimicrobials • Modelling • Evolution

