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Context

Introduction

Nonlinear Mixed Effect Models (NLMEM) increasingly more sophisticated

=  Model evaluation

assessing the adequacy between the tested model and the data

* important part in model development [1,2,3]

graphical and statistical methods available for continuous data

recommended methods include visual predictive check (VPC) and npde as a gold standard [4]

O

[1] Brendel K et al. Clin Pharmacokinet. 2007

[2] FDA 1999

[3] EMA 2006
[4] Nguyen THT et al. CPT Pharmacometrics Syst Pharmacol. 2017
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Joint models

Introduction

Processes of interest are followed throughout clinical trials

Typically in oncology with biomarkers (e.g. PSA, SLD) and time-to-

event (e.g. death, relapse)

Joint models provide a promising statistical framework to estimate

this association

Support clinical decisions and treatment choices

Increased use of joint models [1,2] with NLMEM

How to extend npde for the evaluation of joint models ?

[1] Sudell M et al. BMC Med Res Methodol. 2016
[2] Tardivon C et al. Clin Pharmacol Ther. 2019
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Outline

* Development of npde for the evaluation of joint model with longitudinal and time-to-event (TTE) data
=  Performance of the statistical test

* How can we visually diagnose model deficiencies ?
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Statistical model

yij is the j™ continuous observation for subject i at time t;;

T; is the time to first event

Model for continuous data

T f(Oi, t,-j) + g(0;,t;j,0)e;; ,with ;;~N'(0,1) and g the error model

° 0; =D(u,n;) with u;the fixed effects and 7; the random effects (n;~N (0, (0))

Dependency between observations: conditional independence with respect to random effects

Model for TTE data

°* hi(t16;) = ho(t) x exp(B,-1(0;, 1))

* with S5 the vector of parameters of the baseline hazard function h,,and ; which represents the strength of the
link between 1(6;,t) and the hazard

* urrg = {Bs, BL}
¥ = {uy, urre, Q, 0}



Development of npde for continuous data L'}

Vij Vij
pd;; = Fi;(vi)) =f pi(y, P)dy =J JP(}’|9i)P(9i)d9id}’
0

* prediction discrepancies pd: quantile of an observation in its predictive distribution

* prediction distribution error pde: quantile of a decorrelated observation in its decorrelated predictive distribution
* normalised prediction distribution npd: normalization of pd

* normalised prediction distribution error npde: normalization of pde

[72)
T
@)
<
s
()
2

20 34
15 217
Y 2 0.
10 -
.. > .- . o 0
PDIJ\\ U . : . c 1
54 @)
_2-
0-
_3-
0 200 400 600 0 200 400 600
time time
5.0 34
YdIJ 2
8 25' n G) 1'
S e ., B0
> 0.0 / S 1-
-2 -
2.5 -3
p D E-- 0 200 400 600 0 200 400 600
J! time time

[1] Brendel K et al. Pharm Res. 2006




Development of npde for continuous data L'}

Vij Vij
pd;; = Fi;(vi)) =f pi(y, P)dy =J JP(Y|9i)p(9i)d9idy
0

* prediction discrepancies pd: quantile of an observation in its predictive distribution

* prediction distribution error pde: quantile of a decorrelated observation in its decorrelated predictive distribution
* normalised prediction distribution npd: normalization of pd

* normalised prediction distribution error npde: normalization of pde
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Development of npde for continuous data L'}

Vij Vij
pd;; = Fi;(vi)) =f pi(y, P)dy =J JP(}’|9i)P(9i)d9id}’
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* prediction discrepancies pd: quantile of an observation in its predictive distribution

* prediction distribution error pde: quantile of a decorrelated observation in its decorrelated predictive distribution
* normalised prediction distribution npd: normalization of pd
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Development of npd for TTE data

=  Time to event (T,) is continuous

=  pd for observed event time:
* pd;=F(T) = fOTi pi(t, P)dt = fOTifP(ﬂei)P(ei)deidt
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Development of npd for TTE data

=  Time to event (T,) is continuous
=  pd for observed event time:
* pdi=F() = fOTi pi(t,P)dt = fOTifP(ﬂei)P(ei)deidt

=  Time to event (T,) can be censored (right / left / interval censored event)

* How to deal with censoring ?
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Development of npd for TTE data

=  Time to event (T,) is continuous
=  pd for observed event time:
* pdi=F() = fOTi pi(t,P)dt = fOTifp(tlei)p(Bi)dBidt

=  Time to event (T,) can be censored (right / left / interval censored event)

* How to deal with censoring ?
=  pd for censored event time: same idea as [|] with npde for BLQ data:

* T lies within the interval [T} ; Ty ]

* pd;=U (F(TLi)'F(TRi))
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Development of npd for TTE data

=  Time to event (T,) is continuous
=  pd for observed event time:
* pdi=F() = fOTi pi(t,P)dt = fOTifP(ﬂei)P(ei)deidt

=  Time to event (T,) can be censored (right / left / interval censored event)

* How to deal with censoring ?
=  pd for censored event time: same idea as [|] with npde for BLQ data:

* T lies within the interval [T} ; Ty ]

* pd;=U (F(TLi)’F(TRi))
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Computation of the combined test for joint model

=  Computing npd / npde

* npde for continuous data obtained as previously by decorrelating the observed and simulated continuous

response
°* npd for TTE obtained using the inverse normal function of the pd (only one observation)
= Combined statistical test

*  Pr(reject H, | npde™) with a Kolmogorov-Smirnov (KS) test of normality N'(0,1)

*  Pr(reject H, | npd®) with a KS test of normality 7 (0,1)

»  Bonferroni correction: Pr(reject Hy) = min (Pr (reject H, | npde(l)); Pr(reject HO | npd(z))) X 2

»  rejection if Pr(reject Hy) < 0.05




Outline

"= Development of npde for the evaluation of joint model with longitudinal and TTE data
=  Performance of the statistical test

* How can we visually diagnose model deficiencies !




Simulation study - Model

1000
= Inspired from the work of Desmée et al. [1]
® metastatic castration-resistant prostate cancer fo0
patient -
o . . o e . ‘E-. 10
* original design based on a clinical trial £
= Data: <
® primary outcome: survival
* biomarker: Prostate Specific Antigen (PSA) 0.

[=]
o
Survival probability S(t)

=
S

]
[N}

. . d
Model for PSA: biexponential elt T G 250 N 50 5
p 5 ime (day)
r
@ Parameters Distribution Value

r (day?) Log-normal 0.05
Model for the TTE outcome: PN e mial Plseomal 20 0.6
k—1 € Logit-normal 0.3 1.5
k(t
® hi (tlgl) = E (z) X EXp(IB. PSA (Hir t)) Tesc (day) Log-normal 140 0.6
d (day?) - 0.046
5 (day) - 0.23
k - 1.5 -
A (day) - 580 -

[1] Desmée S et al. AAPS J.2015 B - 0.001 -




Simulation study
Settings

=  Misspecification on PSA model parameter
©  £:{0.15,0.3,0.45,0.6,0.8}

=  Misspecification on TTE model parameter
«  B: {0,0.001,0.003,0.005)

=  Design
* {50,100,200} patients

* follow-up censored at 735 days

° up to 9 measurements
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Simulation study
Settings Evaluation criteria

=  Misspecification on PSA model parameter "=  Notation used:
° €:{0.15,0.3,0.45,0.6,0.8}

=  Misspecification on TTE model parameter
«  B:{0,0.001,0.003,0.005)

= Design * Hy: the dataV can be described by the model M

* {50,100,200} patients

°  V:dataset generated under model M, (e.g. € = 0.15)

°* M:model to test (e.g. € = 0.8)

*  Performance of npde:

* follow-up censored at 735 days

N={50, 100, 200}

° up to 9 measurements

( x200 )

Simulation of Estimation Evaluation

Pr(reject H,)
data \I\/Aunder I:> ofF:ﬂnder I:> Ho{V described
A

by M} /) )

N

Settings on |

e * type l error: % of rejection of M under H, (M=M,))

* power: % of rejection of M under H, (M#M,)

11




Simulation study — Misspecification on PSA model

Parameter: ¢

gtrue
* Type l error:
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Simulation study — Misspecification on PSA model

Parameter: ¢
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Simulation study — Misspecification on PSA model

Parameter: ¢
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Simulation study — Misspecification on TTE model

Parameter: 3

e Type l error: controlled
* Power increases as difference from true value and N increases
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Outline

How can we visually diagnose model deficiencies ?
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How can we visually diagnose model deficiencies ?

For continuous outcome:
- scatter plot of npd/npde vs time and pred
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How can we visually diaghose model deficiencies ?
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How can we visually diaghose model deficiencies ?
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How can we visually diaghose model deficiencies ?

Sample Quantiles (npd)
o

Detrended sample quantiles
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How can we visually diaghose model deficiencies ?
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Example of graphs — TTE part

Strength of the impact of PSA on survival (3 tested): 0.001

Btrue=0.001
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Example of graphs — TTE part

Strength of the impact of PSA on survival (3 tested): 0.001

Btrue=0.001 [true=0.003 Btrue=0.005
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Example of graphs — TTE part

Strength of the impact of PSA on survival (3 tested): 0.001

Btrue=0.001 [true=0.003 Btrue=0.005

Survival-based Visual Predictive Check
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Discussion

* Good performance of the combined test

* adequate type | error
® power increases as the difference in shape differs

* also evaluated in other settings

* Graphs are useful to assess the inadequacies of the model

* More details about the npd for TTE in [I]

* good performance of npd-TTE evaluated on survival data alone, assuming
longitudinal model is correct

[I] Cerou M et al. Pharm Res. 2018
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Perspectives
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= Application on data from a clinical trial

= Comparison of npd-TTE to other diagnostics for survival-type
data:

* Survival-based VPC
* Hazard-based VPC [I]

* Kaplan Meier Mean Covariate [2]

= Extension to repeated TTE

[1] Yeamin H and Hutmacher MM. J Pharmacokinet Pharmacodyn. 2016
[2] Hooker A and Karlsson MO. PAGE 2012
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