Shrinkage in Empirical Bayes Estimates for Diagnostics and Estimation: Problems and Solutions

Radojka M. Savić & Mats O. Karlsson

Division of Pharmacokinetics and Drug Therapy
Department of Pharmaceutical Biosciences
Uppsala University, Uppsala, Sweden
Outline

✓ Empirical Bayes Estimates
✓ Use in Non-linear Mixed Effects Modelling
✓ Shrinkage phenomenon
✓ Shrinkage related problems:
 Diagnostics
 Estimation process (FOCE & NONP)
✓ Solutions & Recommendations
Empirical Bayes Estimates

POSTHOC estimates – individual parameter estimates

Provide population PKPD modellers with:

✓ EBE - individual parameter estimate
✓ IPRED – individual predictions
✓ IWRES – individual weighted residuals

\[IWRES_{ij} = \frac{(DV_{ij} - IPRED_{ij})}{SD(\varepsilon_{ij})} \]
Use of EBEs

✓ **Diagnostics**
 - IPRED vs DV
 - IWRES vs IPRED
 - EBE vs EBE
 - EBE vs Covariate
 - GAM

✓ **Estimation**
 - FOCE
 - Nonparametric estimation

✓ **Prediction (TDM)**

✓ **Simulation**
Diagnostics based on EBEs

Increases resolution by separating variability components

If data are uniformative:

1. EBE distribution will shrink towards 0 (population mean)
 \[\text{EBE} \rightarrow 0 \]

2. Individual predictions (IPRED) will shrink towards the corresponding observation (DV)
 \[\text{IPRED} \rightarrow \text{DV} \]

3. IWRES, residual components will shrink towards 0
 \[\text{IWRES} \rightarrow 0 \]

R.M. Savic, J.J. Wilkins and M.O. Karlsson.
Concept of EBE shrinkage

How well can we estimate this parameter?

η distribution

η

0

No data

Sparse data

Rich data

TRUE parameter

Rich data

η_\text{i}
Shrinking EBE distribution towards 0

Probability Density Function

Post Hoc η values

- True distribution
- Rich data
- Sparse data
- Very sparse data

Ω decrease
Shrinking IPRED towards DV
Shrinking IPRED towards DV
Shrinking IPRED towards DV

IPRED is shrinking towards DV
Shrinking IWRES towards 0

\[IWRES_{ij} = \frac{DV_{ij} - \text{IPRED}_{ij}}{SD(\varepsilon)} \]

If IPRED \xrightarrow{} DV

IWRES \xrightarrow{} 0

![Graph showing probability density function of IWRES values with true IWRES and shrunk IWRES distributions.](image)
Quantifying Shrinkage

1. ETA shrinkage

\[\eta_{sh} = 1 - \frac{SD(\hat{\eta}_{ph})}{\omega} \]

2. EPSILON shrinkage

\[\varepsilon_{sh} = 1 - SD(IWRES) \]

How do these values change with information content?
How shrinkage may influence diagnostics?

Diagnostics explored:

1. **EBE-related diagnostics** (η - shrinkage)
 - EBE distribution plots
 - EBE vs EBE plots
 - EBE vs Covariate plots

2. **IPRED / IWRES - related diagnostics** (ε - shrinkage)
 - IPRED vs DV plot
 - IWRES vs IPRED plot

Methods: MC simulations
- True model was fitted to data unless otherwise stated
- Graphical diagnostics showed on single simulation example to facilitate visualization
Consequences of \(\eta \)- shrinkage:

(i) Change of distribution shape

ETABAR is the arithmetic mean of the ETA-estimates, and the p-value is given for the null hypothesis that the true mean is 0.

ETABAR: \(-0.75E-01\) \(0.63E+00\) \(-0.30E+00\)
SE: \(0.34E-01\) \(0.17E+00\) \(0.17E+00\)

P VAL.: \(0.28E-01\) \(0.13E-03\) \(0.71E-01\)

Significant change in mean value of ETAs!
Consequences of \(\eta \)-shrinkage

(iii) parameter correlation (hidden)

- True data correlated (CORR=0.65)
- Estimated data Correlation hidden (CORR=0.2)

\(\eta_{sh} \) = 22%

\(\eta_{sh} \) = 48%
Consequences of η- shrinkage

(iii) parameter correlation (hidden)

<table>
<thead>
<tr>
<th>Correct</th>
<th>shrinkage 20-30%</th>
<th>shrinkage 30-40%</th>
<th>shrinkage 35-45%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>CL</td>
<td>CL</td>
<td>CL</td>
</tr>
<tr>
<td>Corr: 0.65</td>
<td>Corr: 0.38</td>
<td>Corr: 0.14</td>
<td>Corr: 0.02</td>
</tr>
</tbody>
</table>

Correct shrinkage 20-30%
Consequences of η- shrinkage

(iii) parameter correlation (induced)

Commonly induced correlations:

- $\eta_{sh} = 28\%$
- $\eta_{sh} = 53\%$
- $ka \sim V$
- $EC_{50} \sim E_{max}$
- $EC_{50} \sim k_{out}$
Consequences of η- shrinkage

(iv) parameters / η_s vs. Covariates

Covariate – weight (kg)
Consequences of η- shrinkage - Summary

(i) EBEs may, in addition to shrinkage, show non-normal distribution even when the underlying η distribution is normal

(ii) mean values of EBEs ("ETABAR") may be significantly different from zero, even for a correctly-specified model (a result of asymmetric η-shrinkage)

(iii) EBE-EBE correlations may be hidden or even induced

(iv) covariate relationships may be hidden, falsely induced, or the shape of the true relationship distorted
Consequences of ε-shrinkage

(i) Low power of IPRED to detect model misspecification

Plot is a clear indication of model misspecification

Fitted model: first order absorption

True model: zero-order absorption model
Consequences of ε- shrinkage

(i) Low power of IPRED to detect model misspecification

"Perfect fit" phenomenon

$\varepsilon_{sh} = 6\%$

$\varepsilon_{sh} = 69\%$
Emax model fitted to data simulated with a sigmoidal Emax model

\[\varepsilon_{sh} = 5\% \quad \varepsilon_{sh} = 13\% \quad \varepsilon_{sh} = 29\% \]

Consequences of ε- shrinkage

(ii) Low power of IWRES to diagnose residual error misspecification

11 obs/ID (3 etas)

4 obs/ID (3 etas)

Misspecification indicated

Misspecification NOT indicated
(ii) low power of IWRES to diagnose residual error model misspecification
Consequences of ε- shrinkage - Summary

(i) low power of IPRED to diagnose structural model misspecification ("perfect fit" phenomenon)

(ii) low power of IWRES to diagnose residual error model misspecification
Conclusions – part 1

✓ Model diagnostics involving EBE, IPRED, IWRES is misleading in the presence of shrinkage.

✓ The problem of shrinkage in showed examples associated to the diagnostics solely. Estimation is not affected.

✓ Consequences of shrinkage ignorance:
 - wrong decisions
 - increased time for data analysis
 - wrong models

✓ Shrinkage phenomenon is likely to affect other type of model diagnostics such as:
 - GAM
 - CWRES
1. **Report the shrinkage extent!**
 - Inform modelers about relevance of the graphs

2. **Estimate standard errors of ETAs**
 - Refine EBEs and EBE-based diagnostics

3. **Use other type of diagnostics**
 - Simulation based diagnostics

4. **Do more model testing inside NONMEM**
Background:
EBEs are computed at each iteration step

Question:
How shrinkage may affect FOCE method?
EBE shrinkage & FOCE

Bias in FOCE parameter estimates with EBE shrinkage

\[
\eta_{sh} < 10\%
10 < \eta_{sh} < 25\%
\eta_{sh} > 25\%
\]
Conclusions - part 2

1. Increased bias & variance of FOCE parameter estimates in the presence of shrinkage

→ **FOCE method is becoming more like FO method**
 - Biased variance estimates

Solution

✓ new algorithms
✓ refine variance estimates (NONP)
EBE shrinkage & NONP

1. Search for support points
 - parametric step (FO/FOCE)
 - EBEs computation
 - Points of support

2. Probability estimation
 - the joint probability
 - the marginal cumulative probability

What if EBEs are shrunk?
Consequences of EBE shrinkage

QQ plot: true versus estimated distribution

DEFAULT NONP distribution
NONP and EBE shrinkage
How to proceed?

1. **Keep using default NONMEM support points**
 - range of available support points may be sufficient
 - range of available support points lower than expected
 - results still may be improved compared to the parametric outcome

2. **Inflate variances prior to EBE (POSTHOC) estimation**
 (enough to inflate twice the variances)
Improvement with the inflated variances method
There is a way to enhance the NONP grid with additional points of support.

Additional points of support are generated via simulations from final model.

Practically it requires:

- simulation from the final model
- computation of the individual contributions to the entire NONP density

A general routine that automizes this is under development.
Improvement with the enriched grid method

Diagram:

- **TRUE distribution**
- **ESTIMATED distribution**

- **Default NONP distribution**
- **NONP based on enriched grid**
Conclusions

1. Model diagnostics involving EBE, IPRED, IWRES is misleading
 Essential part of model building:
 - wrong decisions
 - increased time for data analysis
 - wrong models

2. FOCE method is becoming more like FO method
 Biased variance estimates

3. NONP method may be biased
 At higher shrinkage extents
Take-home message

Compute the shrinkage!
1. **Model diagnostics**
 - Report the shrinkage extent!
 - Compute standard errors of ETAs
 - Use other type of diagnostics
 - More testing directly in NONMEM

2. **FOCE**
 - new algorithms
 - refine variance estimates (NONP)

3. **NONP method**
 - Inflate variances prior to EBE estimation
 - Use extended grid method (soon available in PsN)
Falsely induced covariate relationships by EBE shrinkage

Simulations:
- WT as covariate on V
- no covariance V-Ka
- no influence of WT on ka.