An *in silico* physiologically-based pharmacokinetic (PBPK) study of the impact of the drug release rate on oral absorption, gut wall metabolism and relative bioavailability

Andrés Olivares-Morales
andres.olivares@postgrad.manchester.ac.uk

Centre for Applied Pharmacokinetic Research (CAPKR)
Manchester Pharmacy School
The University of Manchester
Manchester, UK
• Intended to control the absorption rate

• Advantages compared to conventional dosage forms (IR):
 ✓ Reduction in peak to trough fluctuations
 ✓ Prolonged exposure (drugs with short half life)
 ✓ Targeted drug delivery

• When developing a CR formulation the goal is to achieve similar exposure as the marketed formulation
Motivating example: Oxybutynin IR vs. CR

- Bioavailability of CR formulation ~50% higher than IR\(^1\)
- Exposure of the main metabolite decreased by ~30%\(^1\)
 - Improved safety profile (antimuscarinic side effects), but similar efficacy as the IR formulations\(^2,3\)

\(^1\)Gupta and Sathyan, 1999; \(^2\)Gupta et al. 1999; \(^3\)Sathyan et al. 2001
Oral absorption of solid dosage forms

\[F = f_a \cdot F_G \cdot F_H \]

- \(F_H = 1 - E_H \)
- \(F_G = 1 - \sum E_{G_i} \)
- \(1 - f_a \) (faeces)
Possible interplay between absorption and gut wall metabolism

Stomach $
ightarrow$ Duodenum $
ightarrow$ Jejunum $
ightarrow$ Ileum $
ightarrow$ Colon

Systemic circulation (F)

Portal vein $(f_a \cdot F_G)$

Liver F_H

IR

Possible interplay between absorption and gut wall metabolism

Relative CYP3A4 Abundance

Project aims

• To investigate the impact of the interplay between drug release, physicochemical and biochemical properties on oral drug absorption and CYP3A4-mediated gut wall metabolism using a PBPK modelling and simulation (M&S) approach.

• To identify the drug and formulation specific factors associated with the higher relative bioavailability observed for some CR formulations of CYP3A substrates
Is this common for other CYP3A substrates?

- IR and CR in the same sets of healthy adults volunteers
- Fasted
A PBPK M&S factorial study

The Simcyp's Advanced Dissolution, Absorption and Metabolism (ADAM) model

(Darwich et al, 2012)

© A. Olivares-Morales 2014
A PBPK M&S factorial study

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (Percentile)</th>
<th>1 (1<sup>st</sup>)</th>
<th>2 (25<sup>th</sup>)</th>
<th>3 (50<sup>th</sup>)</th>
<th>4 (75<sup>th</sup>)</th>
<th>5 (99<sup>th</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{rel} (h^{-1})</td>
<td></td>
<td>4.6</td>
<td>2.3</td>
<td>0.38</td>
<td>0.19</td>
<td>0.096</td>
</tr>
<tr>
<td>Solubility (mg/mL)<sup>9</sup></td>
<td></td>
<td>0.001</td>
<td>0.1</td>
<td>1</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>P_{app} (Caco-2) ($10^{-6} , cm/s$)<sup>10,11</sup></td>
<td></td>
<td>0.01</td>
<td>0.5</td>
<td>5</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>V_{max} CYP3A4 (pmol/min/mg)<sup>12</sup></td>
<td></td>
<td>1</td>
<td>100</td>
<td>500</td>
<td>2,500</td>
<td>10,000</td>
</tr>
<tr>
<td>K_{M} CYP3A4 (μM)<sup>12</sup></td>
<td></td>
<td>1</td>
<td>10</td>
<td>50</td>
<td>100</td>
<td>10,000</td>
</tr>
<tr>
<td>J_{max} P-gp (Efflux) (pmol/min)<sup>13</sup></td>
<td></td>
<td>1</td>
<td>30</td>
<td>300</td>
<td>500</td>
<td>1,500</td>
</tr>
<tr>
<td>K_{M} P-gp (μM)<sup>13</sup></td>
<td></td>
<td>1</td>
<td>50</td>
<td>150</td>
<td>300</td>
<td>2,000</td>
</tr>
</tbody>
</table>

How to analyse such large dataset?

Number of simulations = Levels^{Factors} = 5^7

Biopharmaceutics classification system (BCS)

<table>
<thead>
<tr>
<th>Solubility</th>
<th>Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 2</td>
<td>Class 1</td>
</tr>
<tr>
<td>Class 4</td>
<td>Class 3</td>
</tr>
</tbody>
</table>

\[
Dn = \frac{Dose/250\ ml}{Solubility} \\
fa = 1 - e^{-\frac{2P_{eff}T_{SI}}{R}}
\]

Scenarios of interest (one-at-at-time)

1. Release and CYP3A4
2. Release, CYP3A4 and P-gp
Impact on absorption, first pass metabolism and systemic exposure

SIMULATION OUTCOME
1. Release & CL_{CYP3A4}
1. Release & $\text{CL}_{\text{CYP3A4}}$
2. Release, $\text{CL}_{\text{CYP3A4}}$ and $\text{CL}_{\text{P-gp}}$ (fixed)
2. Release, $\text{CL}_{\text{CYP3A4}}$ and $\text{CL}_{\text{P-gp}}$ (fixed)
Higher relative bioavailability: Parameter space

Relative bioavailability (CR/IR) of CYP3A4 substrates
BCS Class 1

$F_{rel} (%)$ (CR/IR)

$CL_{int, CYP3A4} (\mu L/min/mg)$

$k_{rel}(h^{-1})$
Simulations vs. observed data

Relative bioavailability (CR/IR) of CYP3A4 substrates
BCS Class 1

$F_{rel} (%)$ (CR/IR)

CL_{int}, CYP3A4 (μL/min/mg)

k_{rel} (h$^{-1}$)
Conclusions

- The use of an absorption PBPK model allowed the simultaneous consideration of both formulation and drug-specific properties and their impact on oral bioavailability.

- In almost all the cases, a reduced absorption, *i.e.* reduced f_a, was observed when employing a CR formulation. However, in some cases this was compensated by a reduction on intestinal metabolism (higher F_G), thus leading to a net increase in systemic exposure.

- CR formulations of highly permeable and highly CYP3A4 -cleared compounds are more likely to display higher relative bioavailability than the IR formulations. This can be used as an advantage when developing and CR formulation.
Acknowledgments

Supervisors
Amin Rostami-Hodjegan
Leon Aarons

Collaborators
Adam Darwich (CAPKR)
Yoshiteru Kamiyama (CAPKR/Astellas)

Colleagues (CAPKR)
Aleksandra Galetin
Alison Margolskee
Nikos Tsamandouras
Thierry Wendling

Sponsors
- CONICYT Chile
- The University of Manchester

Thank you all for listening!