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Background

e The Automated Datasets, Models and Outputs (ADaMO) initiative seeks to automate and
streamline pharmacometric processes used for informing decision-making in drug
development

e The manual creation of datasets for modelling, development of population models and
respective reports are complex, arduous and time-consuming processes
o the time spent in these activities tends to be longer than the time invested in using the
models to inform the clinical development of compounds

T

he 3 pillars of ADaMO

The ADaMO initiative has been developed in a validated
computational environment [1, 2], Scinteco imprave, where
data, models and outputs are generated and stored

ADaMO consists of three pillars that cover the end-to-end
Pharmacometric modelling process

o pillarl: automated dataset request and creation

o pillarll: automated model building

o pillar lll: automated output creation

Data Set Request and
Creation
Automated Model Building
Output Creation
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Pillar | : A dataset for population modelling is produced using scripts generated automatically

The process starts with the user completing a data request form in a user-friendly web app, indicating the variables to be included in the dataset (e.g. demographic variables, subjects and
dependent variable with definition of units, formulas and imputation rules). After reviewing the request, a data scientist triggers the automatic generation of SAS scripts in a validated GCP
compliant environment where data is generated and stored [1,2]. Finally, the dataset undergoes QC and the user is automatically notified that the dataset has been created. In this pillar,
automation simplifies and speeds-up the process of dataset request and creation, providing increased robustness as the scripts generated are reusable.
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A heuristic algorithm is being developed to create a population PK model and optimise its components (e.g. structural, inter-individual variability, residual error models) automatically with the
goal of reaching a final PK model developed in NONMEM [3]. For this purpose, an initial NONMEM model is generated from scratch using the open-source R package assemblerr
(https://luupharmacometrics.github.io/assemblerr) [4], and its parameters are estimated using NONMEM directly in R using PharmR, an R wrapper for Pharmpy (https://pharmpy.github.io) [5].
Thereafter, the automatic process continues with the model being modified (e.g. structural model challenged) and a series of candidate models being generated. These are tested and the best
model is selected based on pre-specified statistical criteria. In this pillar, automation speeds-up PK model development and it increases its robustness by using predefined algorithms.
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Pillar Ill: A modelling report is pre-populated automatically Conclusion
A series of R markdown scripts and an R library have been created which allow direct incorporation of model outputs e A solution to automate end-to-end Pharmacometric
(e.g. GOF plots, parameter tables, VPC) into a word report. By automatically combining the structure of a report with modelling has been developed
model outputs (main tables and figures ), the reporting process has been substantially speeded up resulting also in e The current scope of ADaMO includes classical PK models for
fewer typographical and carry over errors. a single entity in pillar Il, and pillars | and Ill already go
B : Screenshots of the generated report beyond this scope, supporting more advanced PK and PK/PD
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