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New predictive 
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Semi-automated pipeline for 
collection and curation of RWD1

Population tumor growth 
inhibition model in advanced 
cutaneous melanoma patients 
receiving ICIs

Real-World Tumor Dynamics - objectives

Data aggregation and retrospective analysis for this study have been approved by the local Ethics Committee for patients who did not refuse general informed consent.
1Abler D., Courlet P. Submitted. Real-World Tumor Dynamics | P. Courlet  |July 1, 2022

How can RWD inform anticancer treatment decisions?
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RWD collection is challenging and requires prior data curation steps 
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Clinical data were extracted from electronic health records, annotated and assessed for quality
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Process mining was employed as quality assurance step to validate the extracted data

Example of patients workflow

1Gatta R. 2017.

pembro_BEGIN: pembrolizumab initiation
pembro_END: last pembrolizumab administration Real-World Tumor Dynamics | P. Courlet  |July 1, 2022
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Images-related data were then retrieved and analyzed
Image-based RWD
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1Sibille L. 2020.        2Capobianco N. 2021.

benign malignant

3D-segmentations of metabolically 
active regions-of-interest (ROI)

• Artefacts (e.g. catheters)

• No lesions correspondence 
across time

PET/CT imaging data were segmented by employing Deep learning methods

(physiologically 
expected)

(presence of 
metabolically active 
cancer cells)

PARS: PET-Assisted Reporting System, Siemens Medical Solutions USA Real-World Tumor Dynamics | P. Courlet  |July 1, 2022
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Trajectories of individual tumor lesions were reconstructed through automated longitudinal 
mapping and majority voting of the status

14

• Same location  same tumor lesion

• Malignancy status assigned to the entire 
lesion trajectory

malignant

Real-World Tumor Dynamics | P. Courlet  |July 1, 2022
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Our methods greatly improved data quality

15

Improvement in the consistency of 
image-derived data compared to 
isolated segmentation results.

Real-World Tumor Dynamics | P. Courlet  |July 1, 2022
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Tumor profiles over time were derived from 91 melanoma patients receiving ICIs
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A model describing longitudinal tumor volumes was developed by assessing different system-
and treatment-related assumptions

Tumor 
volume

kgrowth

kkill

1Chatterjee MS. 2017.       2Jacqmin P. 2007.       3Fessas P. 2017.

Tumor growth model:
Exponential tumor growth with a rate constant retrieved from literature1

Treatment effect (no PK data):
• KPD model2

• Drug dose 
• Treatment ON/OFF

Log-kill hypothesis:
• One killing rate/drug
• kkill,nivolumab = kkill,pembrolizumab

3

• kkill,nivolumab = kkill,pembrolizumab= kkill,ipilimumab

Real-World Tumor Dynamics | P. Courlet  |July 1, 2022

At baseline TV = TV0
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1Chatterjee MS. 2017.       2Jacqmin P. 2007.       3Fessas P. 2017.

Similar performances when comparing simple and more 
complex models (precision, BIC, GOF, VPCs)

Model simplification

A model describing longitudinal tumor volumes was developed by assessing different system-
and treatment-related assumptions

Tumor 
volume

kgrowth

kkill

At baseline TV = TV0

Tumor growth model:
Exponential tumor growth with a rate constant retrieved from literature1

Treatment effect (no PK data):
• KPD model2

• Drug dose 
• Treatment ON/OFF

Log-kill hypothesis:
• One killing rate/drug
• kkill,nivolumab = kkill,pembrolizumab

3

• kkill,nivolumab = kkill,pembrolizumab= kkill,ipilimumab
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OFF treatment: 𝑑𝑇𝑉/𝑑𝑡 = 𝑘𝑔𝑟𝑜𝑤𝑡ℎ × 𝑇𝑉

ON treatment: 𝑑𝑇𝑉/𝑑𝑡 = 𝑘𝑔𝑟𝑜𝑤𝑡ℎ × 𝑇𝑉 − 𝑘𝑘𝑖𝑙𝑙 × 𝑇𝑉

Principle of parsimony



Multi-dimensional covariate assessment enabled by machine learning approaches

16 clinical covariates 
(demographics, disease status, lab 
values, genomics)

1Prague M. 2022.           2Ayral G. 2021.

Radiomics features

Standard 
PMX 

covariate 
assessment 

1,2

19

Quantitative 
description of 
imaging ROI

~230 features per patient

>100 features per 
lesion & timepoint
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Multi-dimensional covariate assessment enabled by machine learning approaches

16 clinical covariates 
(demographics, disease status, lab 
values, genomics)

1Prague M. 2022.           2Ayral G. 2021.           3Terranova N. 2021.

Radiomics features ML-based radiomics feature pre-selection3

Standard 
PMX 

covariate 
assessment 

1,2

20

Quantitative 
description of 
imaging ROI

~230 features per patient

>100 features per 
lesion & timepoint

Example for tumor growth rate constant
baseline

1st follow-up - baseline

Real-World Tumor Dynamics | P. Courlet  |July 1, 2022
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Clinically relevant covariate effects were identified on baseline tumor volume

Potential effect of NRAS mutation on kgrowth

Influence of factors related to cachexia, 
inflammation and advanced disease 

identified on TV0

24% of variability on TV0 explained by 
covariates

Real-World Tumor Dynamics | P. Courlet  |July 1, 2022
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Some radiomics features were significantly associated with model parameters 

Delta Shape Elongation

kgrowth

Higher kgrowth

1st follow-up imageBaseline image

TV0

Gray Level Non Uniformity

Lower TV0

Homogeneity

Clinical 
relevanceMultiple 

imputation 
Preliminary

results (38 patients)
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Conclusion: Real-world tumor dynamics data collected using our newly developed semi-automated 
pipeline were successfully described by a TGI model

Tumor dynamics successfully described in our RW population

Identification of sources of variability

Semi automated pipeline

Modeling and multi-dimensional covariates 

Multi-dimensional analysis of clinical and image-based RWD has the potential to advance precision oncology towards more 
individualized treatment solutions

Data quality supports population-based analyses

Easily applicable to other cancer subtypes and therapies
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