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Introduction

* Model based meta-analyses have become an
important tool in informing decision making in drug
development.

* The main objectives of model based meta-analyses
include:
— Quantifying the treatment effect size and variability
— Characterizing the heterogeneity

— Others
* The question to ask ourselves when performing these
analyses

— Are we 1nterested 1n making inferences at a group/summary
(AD) level? or

— Do we want to make inferences at an individual patient
level (IPD)?

« Aggregation Bias



Introduction (cont’d)

— What type of data do we have?
e Landmark vs. longitudinal
— How do we deal with individual patient
level data (IPD) from some studies

* Reduce to summary measure or some how
include IPD.

— Does the model include covariate
relationships? If so, how are covariates
incorporated in the model?



Introduction (cont’d)

To address these questions, it helps viewing the
summary level data as an aggregation of individual
patient data over a grouping variable to derive an
aggregate model based on individual patient level
model

This framework allows us to explore/understand

— ways to incorporate individual level data along with
aggregate data for efficient use of all the data

— sources of bias when a simple aggregate model 1s fit to the
data

— 1nclusion of covariates into the model

— type of data we need to gather from literature when
building literature databases



[Linearization Method

* Lets consider a meta-analysis describing the

dose-re

sponse relationship (continuous

endpoint and landmark data) for a specific
class of compounds.

* Typica
group ¢

ly, the studies included are parallel
ose-ranging studies (doses: d=placebo,

dl, d2, ¢

3, d4)

 Lety,.be the response for j subject from k™
arm of an 1" trial



Linearization Method (cont’d)

Two common IPD models for these pooled data across trials is

emax - &4 Xy £ 8- Zys + dose;
f(x,z,dose) = Y = (en;) — ( I e U) + €ji

edsp + dOSE;kj

f(x, z, dose) = yu = (eni) — (

e = N(0, (T}?)

emax - 81 - (2" 1L 0, (22)* 1 dosey, N
eds, + dosey T cig

Where x and z are two covariates

For aggregate data, we observe Y}, an estimate of the

E,(Y|dose, x) = / F(Y|dose, x)p(x|dose)dx
X



Linearization Method (cont’d)

For the IPD model (1)

B ? emax - 84 - Xitg + 8, Zigj + dOSE;kj B :
B emax - 81 Ex (Xu) £ 82 - E; (Zi) + doseyy | -
= (en) - ( edso + dosey ) rElw)
We can approximate (4) by replacing expected values of the covariates with X and Zj
B emax - 91 . ()Tffk) + Hg . (ka) + O'OSE;M :
B (em) B ( eds + dOSEH{j ) (6



Linearization Method (cont’d)

For IPD model(2)

Ex;[f(x,z, dose)] = E
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Linearization Method (cont’d)

 However, an approximate equation can be
derived by linearization of model (eq. 2) using
second order Taylor series approximation.

* This approximation for a bivariate function in
a generic form 1s presented below where x and
z are the two variables of function 1 :



Linearization Method (cont’d)

1
(X, Z) 2 Flux, piz) + Filpo, pz) (X — pox) + Blpo, 12)(Z — piz) + 5 £ (e, ) (X — pax)”

1
15 - f o 122)(Z = 1) + B (i, po2) (X = 1) (2 = )

1 1
Efx, Z)] = Flux, piz) + R e (i, iz)oy + 5 f (i, p2)os + Bilpex, j1z) Covix, 2)

1 1
= fuax, ) + 5+ o, 2o + 5 - F7 (s p2) o + B (pax, piz)oxozpx 2
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Simulation Method

* Simulations to understand the effect of degree
of nonlinearity with respect to covariate effects
and between-trial to within-trial variability of
covariates on estimated model parameters
when modeled using individual patient data
(IPD), aggregate data (AD), linearized AD and
linearized combined AD and IPD (AD IPD)

models
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Simulation Method (cont’d)

No. of drugs: 5

No. of studies: 18

— DrgA: 2,

— DrgB, DrgC, DrgD and DrgE — 4 studies each
No. of doses per study: 5 (including placebo)
No. of subjects per dose: 50

No. of simulations per scenario: 500
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Simulation Method (cont’d)

* Analysis Datasets for each simulation:
— IPD, AD, AD IPD (IPD - 2 studies from drug A)

e First IPD data are simulated then reduced to create AD and
AD IPD datasets

* Analysis Models
— IPD data with IPD model
— AD data with AD and AD Lin models
— AD IPD with AD IPD Lin Model

 Evaluation

— The bias and precision in parameter estimates under all
scenarios were assessed as mean estimation error and
relative root mean squared error (RMSE), respectively.
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Simulation Method (cont’d)

Simulation Scenarios

Degree of Nonlinearity

Covariate
Distribution:

Between
Study to
within Study
variability

Small | Moderate | Large
Small X X X
Moderate X X X
Large X X X
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Simulation Method (cont’d)

Table 1: Model parameter estimates for simulation

Parameter Estimates Parameter Estimates

Parameter Estimates

= 0.0506 815 2.5 w‘EEW}S(X) wBSVS(X) 0.227:1.280
Emax -1.11 &1 m 4 w%W}M(X) wBSVM(X) 0.454;0.640
EDso.0iga 1.72 & 1 6 W%w,L(X) u.:BSVL x) 0.909;0.320
EDso prgs 45 8, s 0.889 W%W,S(Z) wBSVS(Z) 6.09;80.60
FDeopge 18 B 11 4wy (2) whey m(2) 12.18:40.30
EDso.pigo 3 b1 6 wary 1(2); wBSVL(Z) 24.37;20.15
EDso.pige 19 oprviX, 2) 0.569
Wig 0.0754 pasv(X, Z) 0.137
e 0.515
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Dose-Response Relationship
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Distribution of Covariates: Between Study vs.
Within Study (Scenario 1)
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Distribution of Covariates: Between Study vs.
Within Study (Scenario J)
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“tBias

Results: Bias in Emax Parameter
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Figure 2: Percent Bias in Emax
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* With increasing degree of nonlinearity in the model (with respect to covariates), the
bias in the estimates for the emax parameter increased noticeably for AD model.

» Appropriately derived aggregation models (AD Lin & ADIPD Lin) using a
linearization approach adequately corrected the bias in the emax parameter.
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LRRMSE

Results: Percent RMSE 1in Emax Parameter

Figure 3: Percent BMSE in Emax
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« RMSE for emax parameter using linearized models were signficantly lower
compared to the simpler AD model across varying degrees of nonlinearity
* As the ratio of between-trial to within-trial variability (BTV/BSV) in covariates

increased, the bias and RMSE 1n emax parameter under the AD model decreased.
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Results: Large nonlinearity &
small BTV to BSV

AD LIN

ADIPD LIN
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 The

Conclusion

proposed linearization method adequately

addressed the 1ssue of aggregation bias when

mod
mMOoC

leling aggregate data using nonlinear
els.

« Wit
asse

1 Increasing heterogeneity in covariates (as
ssed by the ratio of BTV to BSV), the bias

in the model parameter estimates decreases.
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