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Bias (%) (upper part) and RMSE (%) (lower part) forthe fixed effects, the variances of the random 
effects and of the residual errors with the three methods of estimation.

• Population design      for multiple responses

• Definition for single response

- N subjects divided in Q groups of Nq subjects with the same elementary 
design ξq = {t 1, t2, …,tnq} : nq samples and their allocation in time  

• Definition for multiple responses

- Elementary designs composed of several sub-design                   associated 
with the kth type of response

� Nonlinear mixed effects model for one individual  i among N

• Vector of observations Yi composed of the vectors for the K responses

• Each response described by a nonlinear function fk depending on 

- The vector of individual parameters θi

- An elementary design ξi

� Statistical model

•• For individual i, kth response 

• For individual i, K responses
εi are supposed to be independent from one type of response to the other

� MF for multiple responses: linearisation of the model using a first order 
expansion � approximation of  the variance and the expectation

• Implementation of this first order extension of MF for multiple responses in PFIM

� Estimation methods in simultaneous approach
• NONMEM (FO and FOCE methods): linearisation 

• MONOLIX (SAEM algorithm): stochastic approach

� Evaluation by simulation of the relevance of the extension of MF for multiple response model using a first order extension

� Influence of the design on the precision of population parameter estimates

� importance of the choice of the design

� Population design evaluation and optimisation based on the Fisher information 
matrix (MF)

• Single response model
- Linearisation of the model using a first order expansion [1]

- Relevance of this approach demonstrated on real data [2]

Population design in nonlinear mixed effects multiple response models:

extension of PFIM and evaluation by simulation with NONMEM and MONOLIX

Caroline Bazzoli (1), Sylvie Retout (1, 2), France Mentré (1, 2)
(1) INSERM, U738, Paris, France; University Paris 7, Paris, France (2) AP-HP, Bichat Hospital, Paris, France

Context

Objective

Extension of PFIM for multiple responses Results

ωCl
2

ωEmax
2

ωC50 
2 σslopePK

2
σinterPD

2ωCl
2

ωEmax
2

ωC50 
2 σslopePK

2
σinterPD

2ωCl
2

ωEmax
2

ωC50 
2 σslopePK

2
σinterPD

2ωCl
2

ωEmax
2

ωC50 
2 σslopePK

2
σinterPD

2

Boxplots of the RSE (%) for the fixed effects, variances of the random effects and of the residual errors 
estimated  from 1000 replicates by :

[1] Mentré F, Mallet A, Baccar D. Biometrika,1997
[2] Retout S, Mentré F. Bruno R. Statistics in Medicine, 2002
[3] Hooker A, Vicini P. The AAPS journal,2005

[4] Kuhn E, Lavielle M. Computational Statistics and Data Analysis,2005  http://software.monolix.org
[5] Louis TA. Journal of the Royal Statistical Society: Series B,1982
[6] Retout S, Bazzoli C, Comets E, Le Nagard H, Mentré F. PAGE (abstract 1164) , 2007 (poster P4 29)
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• ξPK = {0.166,6,12}

• ξPD = {0.166,6,12,20}
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Comparison to the predicted RSE obtained with an exact method
- Computation of MF with the SAEM algorithm (MONOLIX 2.1) [4]  

* Louis method [5]

- Simulation of one data set with 10000 subjects in order to acquire

Comparison to the empirical RSE (NONMEM V and MONOLIX 2.1)
- Simulation of 1000 data sets (R software)
- Estimation of the population parameters

* NONMEM V (FO and FOCE)   * MONOLIX 2.1 (SAEM)                   
- For each method of estimation

* Computation of the empirical RSE defined as the standard

Comparison to the distribution of the RSE obtained on each data set for      
each parameter with :
- NONMEM V (FO and FOCE) and MONOLIX 2.1 (SAEM)                  

* Computation of the SE
- Linearisation                   - Louis method

Computation of bias and RMSE (%) 
- Comparison of the three estimation methods FO, FOCE and SAEM
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deviation  on the 1000 estimates of each parameter
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Barplot of the predicted and empirical relative standard errors (RSE)(%) for fixed effects (left 
part), variances of the random effects and of the residual errors (right part). 
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� RSE predicted by PFIM equivalent to those predicted by SAEM
� Empirical RSE 

• PFIM, FOCE*, SAEM in the same range
• Larger RSE for FO, especially on βC50 andω2

C50
*Convergence only for 853 data files

� For FO, range of RSE and empirical RSE much larger than:
• RSE predicted by PFIM
• RSE with FOCE and SAEM

� Close distribution of  RSE for FOCE and for the linearisation method of SAEM
• Predicted RSE of PFIM in accordance with empirical RSE 

� Relevance of the SE computed from MF using a first order extension for multiple 
response model 
� extension of PFIM : PFIM3.0 [6] will be available at www.pfim.biostat.fr

asymptotic properties of MF � Rescale of SE for N=100 subjects

� Population design � PK model
• One compartment model

• θPK : Cl and V

• Proportional error model
• PD model

• Emax model
• θPD : E0 , Emax and C50
• Additive error model

3

4

4

� Large bias and RMSE for the FO method
� Reasonable bias and RMSE for FOCE* and SAEM        *Convergence only for 853 data files
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• Multiple response model
- Extension of MF for multiple responses [3] 

- Using the same method as for a model with single response

- Relevance never shown by repeated simulation study

PKPD example

Evaluation method

• N =100
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� Despite linearisation, predicted SE close to SE obtained with FOCE and SAEM 
but not with FO.
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• Computation of the predicted relative standard errors (RSE) obtained with the 
extension of PFIM for this PKPD example
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� FO, FOCE and the two methods of computation of the SE in SAEM (linearisation SALi and Louis method SALo)

� FOCE and the two methods of computation of the SE in SAEM 
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