
Example 2:  Sigmoidal Emax Model – False EBE(mode) 

negative correlation of Emax-ED50 is ameliorated with 

EBE(mean)

Parameters E0, Emax, ED50 are all log normal (tvParam*exp(h_Param), with additive 

residual error, sparse 2 samples per subject.  True correlation Emax-ED50=0.7. 

Figure 2a – 2e show actual EBE correlation for mean (QRPEM) and mode (FOCE) 

based EBEs, as well as properly correlated SIR (Sampling Importance Resampling) 

samples from the QRPEM computed posterior.  Figure 2f shows large and increasing 

(with residual error) EMAX Omega element bias for FOCE/mode case, but no bias for 

QRPEM/mean case. Note the collapse of the mode-based Emax h’s in figure 2e is not 

accompanied by a high apparent shrinkage (0.19) , since the corresponding Omega 

element  is severely underestimated.  True shrinkage using actual Omega is 0.99.

Overview and Objectives

h shrinkage evaluation is based on comparing  the variance over 

subjects of  empirical Bayesian estimates  (EBEs) hi of a random effect  

to the corresponding  Omega parameter estimate:

An h shrinkage value in [0,1] arises from the fact that  usually this 

variance ratio is also in [0,1], so larger shrinkages corresponds to 

smaller fractional ratios.  Generally shrinkage increases with the 

amount of imprecision in the hi estimates – typically sparse data leads 

to high shrinkage. Many diagnostics are directly or indirectly based on 

the EBE, and it is well known [1,2] that such diagnostics become 

progressively more suspect as shrinkage increases.

The most common form of EBE in current use is the MAP estimate 

(mode) of the empirical Bayesian posterior distribution (EBD), as MAP 

estimates are the central focus of common conditional methods such as 

FOCE(I) and LAPLACE.  However, in EM-based methods such as 

QRPEM, IMPEM and SAEM, the mean rather than the mode of the 

EBD plays the central role and the mean can be used as the EBE.   

Here we focus on  properties of the mean vs. mode based EBE and 

present cases strongly suggesting that the mean based version is often 

more robust, useful, and amenable to analytic interpretation.   We also 

note that many EBE diagnostics are easily extended to diagnostics 

based on multiple random samples from the empirical Bayesian 

distribution, as opposed to a distinguished EBE point in that distribution.   

This may overcome some of the problems due to shrinkage.

Example 1  - Simple log normal random intercept model

In [1] a simple random intercept model 

is considered to derive some theoretical properties of shrinkage in a 

simple case. Note that there must be at least one subject i with number 

of observations Nbsi > 1 for this model to be identifiable (otherwise 

there is no information to separate inter-individual from residual error).  

Here the EBD is a normal distribution assuming the random and 

residual errors are normal, so there is no difference between mean and 

mode based EBEs.  We make a simple log normal modification 

which separates mean and mode of the EBD.  Results from 

simulations with Nsub=10000 and Nobsi =1 (9000 subjects) and 

Nobsi =2 (1000 subjects) are presented for increasing residual 

error.  The true W used to simulate the data is fixed at 1, as is 

m.

Fig 1- FOCE estimation performance deteriorates rapidly as shrinkage/residual  

error increases, while QRPEM is much more robust.  Moreover, FOCE mode 

based shrinkage estimates can be misleadingly low (see also Figure 2e, where a 

very poor FOCE estimate has an associated mild apparent  (0.19) but very high 

real shrinkage level (0.99) due to bias in the corresponding Omega estimate.
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True corr(Emax, ED50)=0.7, additive residual stddev = 2
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Other advantages of EBE (QRPEM/mean) relative to EBE 

(FOCE/mode)

1. From the convergence condition for EM algorithms, the Omega estimate 

decomposes as 

where shrinkage is captured by the relative sizes of W1 and W2 – this can be 

easily extended to individual level shrinkage. The 1-1 relation between 

shrinkage and estimation error conjectured in [1] follows immediately.  Also, 

directions of minimal and maximal shrinkage can be computed as solutions to 

the generalized eigensystem.

2. Mean-based shrinkage can easily and naturally be extended to nonparametric 

NLME methods.  Mode-base EBEs do not make sense in that context .

3. The mean over subjects of mean-based EBEs is necessarily zero at QRPEM 

convergence– no p-test on the mean is required or even meaningful and there 

is no necessity for anything like a separate ‘FOCE with centering’ algorithm.

4. The  linear regression used in EM models to update linear covariate models is 

based on responses defined by EBE means.  Thus we expect investigation of 

prospective covariate models via the same linear regression to be more 

informative than regressions based on mode-based EBEs.  It can be shown 

that the mean based methodology is equivalent to regression over a large 

number of SIR samples directly from the EBD posteriors. 
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Shrinkage increases with residual error
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Apparent FOCE/mode shrinkage can be too low

 

 

true FOCE/mode

apparent FOCE/mode

a b

c d

e f


