

MIXTURE MODELS AND MODEL MIXTURES WITH MONOLIX

Marc Lavielle ⁽¹⁾, Hector Mesa ⁽¹⁾, Kaelig Chatel ⁽¹⁾, An Vermeulen ⁽²⁾

(1) INRIA Saclay(2) J & J Pharmaceutical R & D

Some mixtures...

Yesterday night...

Some mixtures...

ASPIRE

or this morning...

Outline

Mixture distributions

- Supervised learning
- Unsupervised learning

Model mixtures

- Between subject model mixture
- Within subject model mixture

The methodology

Conclusions

Mixture models

N subjects,
$$i = 1, 2, ..., N$$

K groups, $k = 1, 2, ..., K$

- y_i vector of observations from subject i
- ψ_i vector of individual parameter of subject *i*
- z_i label (categorical covariate): $z_i \in \{1, 2, ..., K\}$

If
$$z_i = k$$
, then $(y_i, \psi_i) \sim p_k(y_i, \psi_i)$

Mixture models

$$p_k(y_i, \psi_i) = p_k(\psi_i) p_k(y_i | \psi_i)$$

1) Mixture of distributions

If
$$z_i = k$$
, then $\psi_i \sim p_k(\psi_i)$

2) Mixture of models

If
$$z_i = k$$
, then $y_i | \psi_i \sim p_k(y_i | \psi_i)$

Mixture of distributions

Mixture of distributions

Exemple: $\Psi_i = (ka_i, Vol_i, Cl_i)$

Mixture of distributions

Group 1 $\operatorname{Vol}_{i} \sim \operatorname{lognormal}(\mu_{1}, \omega_{1})$ Group 2 $\operatorname{Vol}_{i} \sim \operatorname{lognormal}(\mu_{2}, \omega_{2})$

1) Supervised learning (the labels are known) Categorical covariate model building with MONOLIX

The data oral_data.txt		The structure oral1_1	ctural model	
The covariate model	Data Information		The result	
	Data file oral_data.txt Format Inime	Sep. The file has a header	∖t ▼ Use header	Accept Cancel
Fixed effects 2 100 2 0 0	ID TIME ID TIME 1 0 1 0.25 1 0.5 1 0.75 1 1 1 1.5	▼ Y ▼ DV 65.6722 91.8429 141.897 113.549 170.305	AMT 10000	CAT GROUP 1 1 1 1 1 1 1 1 1 1 1 1 1

1) Supervised learning (the labels are known) Categorical covariate model building with MONOLIX

The data oral_data.txt	See Distribution of the i	ndividual parameters	The stru oral1_*	ctural model 1cpt_kaVCl
The covariate model	Data Information		The result	
	Data file oral_data.txt	Sep. The file has a header	∖t ▼	Accept Cancel
				\frown
Fixed effects		▼ □	AMT 10000	GROUP
2 100 2	The categorical covariate is know	/n		1 1 1

1) Supervised learning (the labels are known) Categorical covariate model building with MONOLIX

The data			The structural model
oral_data.txt	see Distribution of the	ndividual parameters	oral1_1cpt_kaVCl
\frown	L	LL	
The covariate model	Data Information	nue muder	
010	Data file oral_data.txt Format Inime NONMEM	Sep. The file has a header	\t Accept Cancel
•	Different volumes	s in the	
	2 groups	-	DOSE CAT
Fixed effects	. .		AMT GROUP 10000 1
2 100 2	The estadorical		
0	The categorical	K	· 1
	covariate is know	/n	1

2) Unsupervised learning (the labels are unknown) Mixture model building with MONOLIX

The data oral_data.txt	see	Distribution of the individ	lual parameters	The stru oral1_	ctural model 1cpt_kaVCl
There is no covariate	mixture Data Information			The result	
	Data file Format Onlme ONC	oral_data.txt	Sep. The file has a header	∖t ▼ Use header	Accept Cancel
Fixed effects	ID 1 1 1 1 1 1 1	 TIME TIME 0 0.25 0.5 0.75 1 1.5 	Y ▼ DV 65.6722 91.8429 141.897 113.549 170.305	AMT 10000	

2) Unsupervised learning (the labels are unknown) Mixture model building with MONOLIX

The data oral_data.txt	See Distribution of the individual parameters		The	structural model al1_1cpt_kaVCl
There is no covariate	mixture LLL Data Information		The o	
	Data file oral_data.txt Format I nime I NONMEM The file has a head	Sep. Ier	∖t ▼ Use header	Accept Cancel
Fixed effects	 The categorical 	-	DOSE AMT 10000	
	covariate is unknown			

2) Unsupervised learning (the labels are unknown) Mixture model building with MONOLIX

The data oral_data.txt	Distribution of the i	ndividual parameters	The structu oral1_1cp	ral model t_kaVCl		
There is no covariate	Date I mation	nation				
	Data file oral_data.txt Format Inime Inime NONMEM	Sep. The file has a header	∖t ▼ Use header	Accept Cancel		
Fixed effects 2 100 2	ID TIME ID TIME 1 0 1 0.25 1 0.5 1 0.75 1 0.75 1 1 1 1 1 5	▼ Y ▼ DV 65.6722 91.8429 141.897 113.549 170.305	AMT 10000			

2) Unsupervised learning (the labels are unknown) Mixture model building with MONOLIX

2) Unsupervised learning (the labels are unknown) Mixture model building with MONOLIX

The estimated population parameters (SAEM for mixtures)

		Know categorical c	n ovariate	Estimated categorical covariate		
	« true values »	estimations	r.s.e.(%)	estimations	r.s.e.(%)	
ka	1	1	3	1	3	
V	70	68.3	2	65.6	3	
β _v	-0.5	-0.507	8	-0.517	10	
Cl	4	4	2	4	2	
ω _{ka}	0.2	0.197	11	0.208	11	
ω	0.2	0.179	8	0.186	11	
ω _{cl}	0.2	0.169	8	0.168	7	
b	0.2	0.199	2	0.199	2	
π1	0.6	0.6	-	0.686	10	
π2	0.4	0.4	_	0.314	21	

The estimated population distributions

VPCs: global VPC includes both groups

VPCS: use the estimated latent categorical covariate to stratify the data

VPCs: use the estimated latent categorical covariate to stratify the data

VPCs: use the estimated latent categorical covariate to stratify the data

II Mixture of models

Some data

- POWER studies were conducted by TIBOTEC
- Viral load data from 578 HIV infected patients
- Randomized, controlled, partially blinded studies
- 3 studies of up to 144 weeks, performed in highly treatment experienced patients, using darunavir/ritonavir (DRV/RTV) or an investigator-selected control PI, combined with an optimised background regimen (OBR), consisting of nucleoside reverse transcriptase inhibitors with or without the fusion inhibitor enfuvirtude.

Some data

- POWER studies were conducted by TIBOTEC
- Viral load data from 578 HIV infected patients
- Randomized, controlled, partially blinded studies
- 3 studies of up to 144 weeks, performed in highly treatment experienced patients, using darunavir/ritonavir (DRV/RTV) or an investigator-selected control PI, combined with an optimised background regimen (OBR), consisting of nucleoside reverse transcriptase inhibitors with or without the fusion inhibitor enfuvirtude.

Some data

The data exhibit three different typical profiles:

- non-responders,
- responders,
- rebounders.
- => We propose to describe these viral load data with a mixture of three models

Between subject model mixture (unsupervised learning)

3 different profiles	3 different groups	3 different VK models
$\begin{array}{c} 4 \\ 4 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 100 \\ 200 \end{array}$	nonresponder $z_i = 1$	$f_1(t) = A_1 + A_2$
6 4 4 + + + + + + + + + + + + +	responder $z_i = 2$	$f_2(t) = A_1 e^{-\lambda_1 t} + A_2 e^{-\lambda_2 t}$
$ \begin{array}{c} 6 \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ +$	rebounder $z_i = 3$	$f_3(t) = A_1 e^{-\lambda_1 t} + A_2 e^{-\lambda_2 t} + \frac{A_3}{1 + e^{-\lambda_3 (t - t^*)}}$

Between subject model mixture (unsupervised learning)

$$f_1(t) = A_1 + A_2$$

$$f_2(t) = A_1 e^{-\lambda_1 t} + A_2 e^{-\lambda_2 t}$$

$$f_3(t) = A_1 e^{-\lambda_1 t} + A_2 e^{-\lambda_2 t} + \frac{A_3}{1 + e^{-\lambda_3 (t - t^*)}}$$

$$p_1 = P(z_i = 1)$$

 $p_2 = P(z_i = 2)$
 $p_3 = P(z_i = 3)$

Population approach:

- IIV on A_1 , λ_1 , A_2 , λ_2 , A_3 , λ_3 , t^*
- No variability on p_1 , p_2 , p_3

Between subject model mixture MLXTRAN implementation

\$PROBLEM Between Subject Model Mixture
\$PSI A1 L1 A2 L2 A3 L3 TL S1 S2
\$EQUATION
f1=A1+A2
f2=A1*exp(-L1*T)+A2*exp(-L2*T)
f3=A1*exp(-L1*T)+A2*exp(-L2*T)+A3/(1+exp(-L3*(T-TL)))
p1=1/(1+S1+S2)
p2=S1/(1+S1+S2)
p3=S2/(1+S1+S2)
\$OUTPUT
OUTPUT1 = BSMM(f1,p1,f2,p2,f3,p3)

Between subject model mixture

Some results

Should we consider this subject

- as a non responder?
- as a responder?
- as a rebounder?

Or someone « in between »?

Within subject model mixture

$$f_1(t) = A_1 + A_2$$

$$f_2(t) = A_1 e^{-\lambda_1 t} + A_2 e^{-\lambda_2 t}$$

$$f_3(t) = A_1 e^{-\lambda_1 t} + A_2 e^{-\lambda_2 t} + \frac{A_3}{1 + e^{-\lambda_3 (t - t^*)}}$$

$$f = p_1 f_1 + p_2 f_2 + p_3 f_3$$

Population approach:

- IIV on A_1 , λ_1 , A_2 , λ_2 , A_3 , λ_3 , t^*
- IIV on p_1, p_2, p_3

MONOLIX IMPLEMENTATION Within Subject Model Mixture

\$PROBLE	M	V	√itł	nin	Sι	ıbj	ect	Mo	del	Mixture
\$PSI	A1	L1	A2	L2	A3	L3	TL	S1	S2	
\$EQUATI	ON									
f1=A1+A	.2									
f2=A1*e	xp	(-L1	L*T)	+A2	2*e2	kb (·	-L2	*T)		
f3=A1*e	xp	(-L1	L*T)	+A2	2*e2	kb (·	-L2	*T)·	+A3,	/(1+exp(-L3*(T-TL)))
p1=1/(1	+S1	L+S2	2)							
p2=S1/(1+5	51+5	52)							
p3=S2/(1+5	51+5	52)							
\$OUTPUT										
OUTPUT1	=	WSN	4M (1	E1, g	51,1	E2,]	<u>2</u> ,	£3,]	<u>o</u> 3)	

Within subject model mixture Some results

SAEM for mixture models

at iteration k,

i) simulate the latent categorical covariates (z_i) and the individual parameters (ψ_i)

$$\left(z_i^{(k)}, \psi_i^{(k)}\right) \sim p\left(z_i, \psi_i | y_i; \theta^{(k)}\right)$$

ii) estimate the expectation of the complete log-likelihood using stochastic approximation

$$Q_{k+1}(\theta) = Q_k(\theta) + \gamma_k \left(LL(y_i, z_i^{(k)}, \psi_i^{(k)}; \theta) - Q_k(\theta) \right)$$

iii) update the estimation of the population parameters $\theta_{k+1} = \operatorname{Argmax} Q_{k+1}(\theta)$

Conclusions

- The SAEM algorithm was extended for the analysis of mixture models
- The algorithm handles different types of mixtures (mixture distributions, between and within model mixtures)
- The estimated labels can be used to stratify the data
- The algorithms are implemented in new MONOLIX 3.2 and supported by MLXTRAN
- Other possible extensions are straightforward (mixture of error models...)