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Mixture models

yi vector of observations from subject i

yi vector of individual parameter of subject i

zi label (categorical covariate):  Kzi ,...,2,1

N subjects,  i = 1,2,…,N     

K groups,    k = 1,2,…,K
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Mixture of distributions
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Mixture of distributions
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1) Supervised learning (the labels are known)

Categorical covariate model building with MONOLIX
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2) Unsupervised learning (the labels are unknown)

Mixture model building with MONOLIX

• 1 « latent » categorical

covariate

• 2 categories (2 groups)



2) Unsupervised learning (the labels are unknown)

Mixture model building with MONOLIX

• Different volumes in the 

2 groups

• The categorical

covariate is estimated



Known
categorical covariate

Estimated
categorical covariate

« true values » estimations r.s.e.(%) estimations r.s.e.(%)

ka 1 1 3 1 3

V 70 68.3 2 65.6 3

bV -0.5 -0.507 8 -0.517 10

Cl 4 4 2 4 2

ka 0.2 0.197 11 0.208 11

V 0.2 0.179 8 0.186 11

Cl 0.2 0.169 8 0.168 7

b 0.2 0.199 2 0.199 2

p1 0.6 0.6 - 0.686 10

p2 0.4 0.4 - 0.314 21

The estimated population parameters

(SAEM for mixtures)
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VPCs: global VPC includes both groups
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VPCs: use the estimated latent categorical

covariate to stratify the data
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Some data  

• POWER studies were conducted by

TIBOTEC

• Viral load data from 578 HIV infected

patients

• Randomized, controlled, partially blinded

studies

• 3 studies of up to 144 weeks, performed

in highly treatment experienced patients,

using darunavir/ritonavir (DRV/RTV) or an

investigator-selected control PI, combined

with an optimised background regimen

(OBR), consisting of nucleoside reverse

transcriptase inhibitors with or without

the fusion inhibitor enfuvirtude.
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Some data  

The data exhibit three different typical 

profiles: 

• non-responders, 

• responders, 

• rebounders.

=> We propose to describe these viral load 

data with a mixture of three models



Between subject model mixture
(unsupervised learning)

3 different

profiles

3 different

groups 
3 different VK models
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Between subject model mixture
(unsupervised learning)
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$PROBLEM  Between Subject Model Mixture

$PSI  A1 L1 A2 L2 A3 L3 TL S1 S2  

$EQUATION

f1=A1+A2

f2=A1*exp(-L1*T)+A2*exp(-L2*T)

f3=A1*exp(-L1*T)+A2*exp(-L2*T)+A3/(1+exp(-L3*(T-TL)))

p1=1/(1+S1+S2)

p2=S1/(1+S1+S2)

p3=S2/(1+S1+S2)

$OUTPUT

OUTPUT1 = BSMM(f1,p1,f2,p2,f3,p3)

Between subject model mixture
MLXTRAN implementation
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Should we consider this subject

- as a non responder?

- as a responder?

- as a rebounder?

Or someone « in between »?



Within subject model mixture
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• IIV on A ,  , A ,  , A ,  , t*

• IIV on p1 , p2 , p3
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MONOLIX IMPLEMENTATION
Within Subject Model Mixture

$PROBLEM  Within  Subject Model Mixture

$PSI  A1 L1 A2 L2 A3 L3 TL S1 S2  

$EQUATION

f1=A1+A2

f2=A1*exp(-L1*T)+A2*exp(-L2*T)

f3=A1*exp(-L1*T)+A2*exp(-L2*T)+A3/(1+exp(-L3*(T-TL)))

p1=1/(1+S1+S2)

p2=S1/(1+S1+S2)

p3=S2/(1+S1+S2)

$OUTPUT

OUTPUT1 = WSMM(f1,p1,f2,p2,f3,p3)



Within subject model mixture
Some results
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at iteration k,

i) simulate the latent categorical covariates (zi) and the individual

parameters (yi ) 

ii) estimate the expectation of the complete log-likelihood using

stochastic approximation

iii) update the estimation of the population parameters

SAEM for mixture models
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Conclusions

 The SAEM algorithm was extended for the 
analysis of mixture models

 The algorithm handles different types of 
mixtures (mixture distributions, between and 
within model mixtures) 

 The estimated labels can be used to stratify the 
data

 The algorithms are implemented in new MONOLIX 
3.2 and supported by MLXTRAN 

 Other possible extensions are straightforward 
(mixture of error models...)


