Modelling the Dynamics of Glucose, Insulin, Insulin Sensitivity and Beta-Cells in Subjects with Insulin Resistance and Patients with Type 2 Diabetes

Jakob Ribbing

PAGE 19 June 2008

Ribbing J, Hamrén B, Svensson MK, and Karlsson MO A Model for Glucose, Insulin, Beta-Cell and HbA1c Dynamics in Subjects with Insulin Resistance and Patients with Type 2 Diabetes (Manuscript)
Scope

• Covered
 – Mechanisms of type 2 diabetes
 – BIG model by Topp et al.
 – The usual suspects: Method, Results and Conclusions

• Not covered
 – Previously developed PK-PD models
Mechanism of Type 2 Diabetes

- Glucose
- Type 2 Diabetes (T2DM)
- Insulin resistance
 - Due to FFA
- Reduction in beta-cell mass (BCM)

Beta cells → Glucose → Type 2 Diabetes (T2DM)

- Insulin
Topp et al. - BIG Model

- **Beta-cell mass, Insulin and Glucose (BIG)**
- Three differential equations
 - Includes adaptation of beta-cell mass (BCM)
- Not fitted simultaneously
 - Derived from sources in literature
 - Mean parameter values for normal subject
- No pharmacological treatment

1. Glucose is Regulated by Insulin

\[\frac{dFPG}{dt} = R_0 - \left(E_{GO} + S \cdot FI \right) \cdot FPG \]
1. Glucose is Regulated by Insulin

\[\frac{dFPG}{dt} = R_0 - \left(E_{GO} + S \cdot FI \right) \cdot FPG \]
2. Insulin is regulated by Glucose!

\[
dFI/dt = BCM \cdot \sigma \cdot FPG^2 / (\alpha^2 + FPG^2) - k \cdot FI
\]
2. Insulin is regulated by Glucose!

\[\frac{dFI}{dt} = BCM \cdot \sigma \cdot \frac{FPG^2}{(\alpha^2 + FPG^2)} - k \cdot FI \]
3. Beta-Cell Mass (BCM) Adapting to Glucose Level

\[\frac{dBCM}{dt} = (-d_0 + R_1 \cdot FPG - R_2 \cdot FPG^2) \cdot BCM \]
3. Beta-Cell Mass (BCM) Adapting to Glucose Level

\[\frac{dBCM}{dt} = (-d_0 + R_1 \cdot (FPG - \text{Offset}) - R_2 \cdot (FPG - \text{Offset})^2) \cdot BCM \]
Tesaglitazar – A dual PPAR agonist

• Tesaglitazar PPAR α-γ agonist

• Development discontinued in phase III
 – Reduced renal function

• Anti-diabetic effects similar to γ agonists, pioglitazone and rosiglitazone
 – Increased insulin sensitivity
 • Due to decrease in FFA
 – Increased beta-cell mass?
Aim

• Develop an integrated population PK-PD model for glucose, insulin and BCM
 – Treatment effects
 • Tesaglitazar
 • pre-treatment in drug experienced
 – Patient heterogeneity
 • Random IIV
 • Disease stage
Method – Tesaglitazar data

• **SIR** — Study in Insulin Resistance
 – 3-months, insulin resistant non-diabetics

• **GLAD** — Glucose and Lipid Assessment in Diabetes
 – 3-months, treatment experienced and naïve

• **GALLANT6**
 – 6-months, treatment experienced and naïve

• Fasting measurements from 1460 subjects
Method - New Model Structure Based on BIG

Pre-treatment or tesaglitazar exposure
Overview - Drug and System Specific Parameters

Physiological Parameters
- Glucose-dependent growth rate of BCM
- Glucose dependent death rate of BCM
- BCM death rate at zero glucose (extrapol)
- Maximum insulin secretion per unit BCM
- EC$_{50}$, glucose stimulated insulin secretion
- Hill factor, glucose stimulated insulin secretion
- First order elimination rate of insulin
- Glucose production at zero glucose (extrapol)
- Total glucose effectiveness at zero insulin

Pathophysiological parameters
- OFFSET in BCM adaptation
- Insulin sensitivity

Mixed origin parameters
- K$_{out}$, insulin sensitivity
- Relation btw insulin elimination & insulin sensitivity

Pharmacology parameters
- E$_{max}$, insulin sensitivity
- EC$_{50}$, insulin sensitivity
- EC$_{50}$, OFFSET
- Hill coefficient, OFFSET
- Pre-treatment effect, insulin sensitivity
- Pre-treatment effect, OFFSET

Fixed and random effects estimated in NONMEM
Results - Drug Naïve Diabetic Patients, GLAD

Treatment stopped

Time after start of treatment (days)
Results - Insulin Resistant Non-Diabetic Subjects

Time after start of treatment (days)
Result – Median Response in IRS Subjects and Naïve Diabetics

![Graph showing response levels over time](image-url)

- BCM
- S
- IRS (SIR)
- Drug Naive, GLAD

<table>
<thead>
<tr>
<th>Level, relative to normal</th>
<th>Time after start of treatment (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0 50 100 150 200 250</td>
</tr>
<tr>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

• Naïve T2DM patients, 40% of normal BCM
 – Well in line with literature
 – Decrease in actual *beta-cell function* mainly decrease in *BCM*

• Strong relation between *insulin elimination* and *insulin sensitivity*
 – Well in line with literature
 – FFA common link
 – Important when assessing beta-cell function!
Conclusions

• Describes FPG, FI and BCM well
 – mechanistic manner

• Allows incorporation of
 – Short-term experiments
 – Observations of FFA
 – Observations of BCM (future)
 – Treatment duration of 1-2 years
 • Long term disease progression
 • Long term disease modifying effects