Evaluation of assumptions underpinning pharmacometric models

<u>Qing Xi Ooi¹</u>, Daniel Wright¹, Geoffrey Isbister², Stephen Duffull¹

¹ School of Pharmacy, University of Otago, Dunedin, New Zealand ² School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia

Models and assumptions

- All models are underpinned by assumptions
- The validity of model inference depends on:
 - Probability
 - Impact of assumption violation
- The boundary beyond which the use of an assumption is invalid \rightarrow limitation

Importance of assumption evaluation

Guidance for Industry Population Pharmacokinetics

FDA. 1999; https://www.fda.gov/downloads/drugs/guidances/UCM072137.pdf

Guideline on Reporting the Results of Population Pharmacokinetic Analyses

EMEA. 2007; http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003067.pdf

Good Practices in Model-Informed Drug Discovery and Development: Practice, Application, and Documentation

EFPIA MID3 Workgroup et al., CPT Pharmacometrics Syst Pharmacol. 2016;5(3):93-122

Other published guidelines

Inadequate reporting of assumptions

- Assumptions are not addressed routinely in published literature
- Regulatory perspective (EMA/EFPIA M&S workshop in 2011):
 - Limitation of analysis submitted for regulatory review
 - A lack of transparent description of influential assumptions
- Barrier for effective model use and regulatory review

EFPIA MID3 Workgroup et al., CPT Pharmacometrics Syst Pharmacol. 2016;5(3):93-122

Existing framework

1 Assumption Testing in Population Pharmacokinetic Models: Illustrated with an Analysis of Moxonidine Data from Congestive Heart Failure Patients

Mats O. Karlsson,^{1,4} E. Niclas Jonsson,¹ Curtis G. Wiltse,² and Janet R. Wade³

Karlsson et al., J Pharmacokinet Biopharm. 1998;26(2):207-46

WHITE PAPER

Good Practices in Model-Informed Drug Discovery and Development: Practice, Application, and Documentation

EFPIA MID3 Workgroup: SF Marshall¹*, R Burghaus², V Cosson³, SYA Cheung⁴, M Chenel⁵, O DellaPasqua⁶, N Frey³, B Hamrén⁷, L Harnisch¹, F Ivanow⁸, T Kerbusch⁹, J Lippert², PA Milligan¹, S Rohou¹⁰, A Staab¹¹, JL Steimer¹², C Tornøe¹³ and SAG Visser¹⁴

EFPIA MID3 Workgroup et al., CPT Pharmacometrics Syst Pharmacol. 2016;5(3):93-122

Recommendations:

- Documentation of assumptions
- How to assess assumptions?

Aim

• To propose a framework for evaluating assumptions inherent to a top-down or bottom-up pharmacometric model

Classification of assumptions

- Identification of assumptions \rightarrow according to the origin of the assumption
- Implicit:
 - Arise from an inherent component of a method or model
 - e.g. Cockcroft-Gault equation implicitly assumes serum creatinine is at steady-state
 - e.g. Maximum likelihood method typically requires the observations to be iid
- Explicit:
 - Arise from the **application** of a method or model
 - e.g. Cockcroft-Gault equation provides an unbiased estimate of mGFR
 - e.g. The recorded blood sampling times are accurate

Flowchart for systematic evaluation of assumptions

Internal evaluation

Internal evaluation:

External evaluation

Impact of assumption violation, I

Risk stratification based on I

Probability of assumption violation, P

Application

- Top-down example
 - To develop a K-PD model for warfarin and vitamin K-dependent coagulation proteins

- Bottom-up example
 - Factor VII-based method for INR prediction based on a QSP coagulation network model

Wajima et al., Clin Pharmacol Ther. 2009;86(3):290-8

Demonstration of the utility of the flowchart

- Top-down example
 - To develop a K-PD model for warfarin and vitamin K-dependent coagulation proteins

1. Internal evaluation of implicit assumption

- 2. Internal evaluation of explicit assumption
- 3. External evaluation of implicit assumption
- 4. External evaluation of explicit assumption

Ooi et al., Clin Pharmacokinet. 2017; 56(12):1555-66

1. Internal evaluation of implicit assumption: $\varepsilon \sim N(0, \sigma^2)$

2. Internal evaluation of explicit assumption: Daily dose time of 6pm

3. External evaluation of implicit assumption: Reversible binding

3. External evaluation of implicit assumption: Reversible binding

3. External evaluation of implicit assumption: Reversible binding

Prior knowledge:

- VK supplementation
- Variable A_{50} i.e. $A_{50}(t)$
- Extrapolation to new population → biased predictions

4. External evaluation of explicit assumption: V = 8 L

External evaluation:

Suggested assumption table

- Documentation of assumptions → EFPIA's white paper on good practices in MID3
- Adapted and expanded for use in concert with the flowchart

Assumption	Impact (I)			Probability (P)			Decision
	Methods	Results	Rating	Methods	Results	Rating	Decision
State the assumption	Prior or posterior? Testable? Outline method	Summarise results and justify rating	Significant / insignificant / unknown	Prior or posterior? Testable? Outline method	Summarise results and justify rating	Likely / unlikely / unknown	Go or no-go for model building or model use

EFPIA MID3 Workgroup et al., CPT Pharmacometrics Syst Pharmacol. 2016;5(3):93-122

Discussion

- A flowchart for systematic evaluation of assumptions is proposed
- Application to top-down (and bottom-up) models
- The next step:
 - Apply the flowchart to other settings
 - To fully assess its applicability and practicality in assumption evaluation
 - A web-based application / package in a software can be introduced to help modellers to evaluate assumptions comprehensively and efficiently

Acknowledgements

- University of Otago Doctoral Scholarship
- School of Pharmacy, University of Otago
- Otago Pharmacometrics Group
- Clinical Research Centre, Ministry of Health Malaysia

