CLADRIBINE TABLETS DOSING RULES

Simulation analysis of absolute lymphocytes counts (ALC) and relapse rate (RR) following cladribine treatment rules in subjects with relapsing-remitting multiple sclerosis (RRMS)

Nadia Terranova¹, Christine Hicking², Fernando Dangond³, Alain Munafo¹

¹Merck Institute for Pharmacometrics, Lausanne, Switzerland, an affiliate of Merck KGaA, Darmstadt ²Global BioStatistics, Merck KGaA, Darmstadt, Germany ³Global Clinical Development - Neurology, EMD Serono, Billerica, MA

> PAGE 2017 Budapest, Hungary

Treatment guidelines proposed to manage the risk of lymphopenia expected due to cladribine MoA

- Cladribine exerts sustained effects in RRMS by selective depletion of lymphocytes.
- A minority of patients develop Grade 3/4 lymphopenia at any time (25%, CLARITY study). Most of these
 occurred in patients receiving cladribine treatment when their absolute lymphocyte counts (ALC) were at
 Grade 2 or worse.

Alternative rules:

Treatment postponements during Year 2 allowed in blocks of 1/2/3 months in patients with lymphopenia Grade 2-4 or 3-4. • If, after three postponements, a patient's ALC value had not recovered to Grade 0/1, the treatment would stop

Cladribine treatment rules | June 7, 2017

Assessing the impact of treatment guidelines on the occurrence of relapses requires clinical trial simulations

- Obtain projections for Relapse Rate (RR) and the Absolute Lymphocyte Counts (ALC) dynamics by accounting for treatment delays or cancellations in patients presenting lymphopenia of Grade 2-4.
- Investigate the impact of postponement of dosing or cancellation of treatment with cladribine tablets on the probability of being relapse free over time in RRMS subjects.

Satisfactory model of ALC *vs.* time and exposure **Prior ALC modeling information**

Population PD modeling approach*

Indirect response model with cladribine stimulating the loss function (lymphocyte perish rate) through an E_{max} drug-effect relationship to cladribine exposure

- Renal clearance proportional to the individual $CR_{CL_i}(t)$
- IIV on ALCO, MRT (mean residence time), and C₅₀
- Covariate SEX on cladribine potency parameter C₅₀

*CLARITY, CLARITY Extension and Oracle Studies

Good **description of ALC dynamics** following treatment with cladribine according to different schedules Good capabilities in **predicting different CTCAE grades** of lymphopenia

Modelling shows that 3.5 mg/kg dose is already at the shoulder of exposure-efficacy curve **Prior RR modeling information**

Population Repeated Time-to-Event (RTTE) model of qualifying relapses*

- Weibull hazard function with decreasing hazard over time
- Inhibitory Emax dose-effect relationship on hazard, using cumulative dose with implemented decay as effect driver

 $h(t) = h_0(t) * (1 - \frac{E_{max} * Exps(t)}{D_{50} + Exps(t)})$

Effect compartment exposure, linking the short systemic exposure to the long-lasting effect

- Baseline hazard (h_0) given by: $h_0(t) = \lambda \gamma (\lambda t)^{\gamma-1}$
- Dose adjusted for $CR_{CL_i}(t)$ centered on population median
- IIV and covariate EXNB (number of exacerbation prior to study entry) on λ

Good **description of the time to occurrence (and re-occurrence) of qualifying relapses** Showed that the **3.5 mg/kg cumulative dose is truly appropriated** in reducing the risk of relapses

*CLARITY, CLARITY Extension and Oracle Studies

Simulation strategy relies on a complex workflow

Cladribine treatment rules | June 7, 2017

CLARITY was considered as the clinical trial to be simulated **Covariate and execution models**

- Subjects with RRMS from the Phase III cladribine trial (CLARITY)
- **Sampling** of model covariates from **observed** distributions by accounting for their relationships (**covariance**), and assignment to each virtual subject
- Covariates considered as constant (no time-varying)
- Patients with **baseline lymphopenia** Grade 1-4 (as part of the risk minimization plan)
- Cladribine total cumulative dose of 3.5 mg/kg over 4 or 5 days at Month 1 and 2 of Year 1 and 2
- No randomization rules or deviations from the protocol
- Initial virtual population of 5000 subjects
- Study size increase by blocks of 2000 subjects until model output comparable with observations

Holford N, et al. *Clin Pharmacol Ther* (2010) Tannenbaum SJ, et al. *J Pharmacokinet Pharmacodyn* (2006)

Generating individual virtual subjects representative of subjects in CLARITY study

Using 5000 virtual patients, the simulation workflow could be validated, reproducing CLARITY scenario

Virtual patients treated with cladribine total cumulative dose of 3.5 mg/kg according to the CLARITY trial protocol

The simulation allowed to identify those virtual patients requiring postponement, based on their ALC observed at the end of Year 1

 Regardless of block definition (1, 2 or 3 months) only 3% of virtual subjects required two or more treatment postponements

Alternative scenario 2:

Treatment postponements during Year 2 allowed in blocks of two months in patients with lymphopenia Grade 2-4

 Of those who qualified for postponements (lymphopenia Grade 2-4), less Grade 3-4 lymphopenia was observed at anytime during Year 2 when applying the postponement rules.

Cladribine treatment rules | June 7, 2017

The dosing algorithms had no impact on the probability of having a relapse over the 2-year treatment duration

No impact of treatment rules was observed (in the virtual population) on the probability of having 1-6 relapses within 24 months treatment window

 Differences in the clinical relevant outcome appear small, suggesting that treatment postponements during Year 2 do not lead to loss of efficacy

Model predictions for a typical subject

Postponing the Year 2 treatment is an appropriate risk mitigation measure for patients with lymphopenia Grade 2-4 at the end of Year 1

- Alternative treatment rules were investigated by obtaining projections for the Absolute Lymphocyte Counts (ALC) dynamics and Relapse Rate (RR) and in different scenarios.
- Results from this simulation analysis support treatment guidelines proposed to decrease risk of developing severe lymphopenia following cladribine treatment, while preserving cladribine efficacy on the considered clinical endpoint.
- As part of the risk minimization strategy to reduce the risk of lymphopenia, it is proposed to
 postpone cladribine treatment in year 2 until ALC have recovered to Grade 1 or better; should this not
 happen within 6 months, the treatment should be discontinued.
- Very few subjects (1% or less) would not recover to Grade 1 or 0 within an additional 6 months.
- In those who qualified for postponements (8% of virtual subjects), the proportion reaching Grade 3/4 lymphopenia at some time in the study is decreased (from 85% to 76%) when the mitigation rule is applied.
- Such a delay of up to 6 months has essentially no effect on the probability of experiencing relapses during the second year of cladribine treatment.

Acknowledgements

Merck colleagues

- Clinical Team and Project Team
- Pascal Girard

Externals

- Prof. Marc Lavielle
- Pharmacometrics group at Uppsala University, especially Prof. Mats O. Karlsson, Siv Jönsson, Ana Novakovic, Emilie Schindler and Anders Thorsted

17