CLADRIBINE TABLETS

DOSING RULES

Simulation analysis of absolute lymphocytes counts (ALC) and relapse rate (RR) following cladribine treatment rules in subjects with relapsing-remitting multiple sclerosis (RRMS)

Nadia Terranova1, Christine Hicking2, Fernando Dangond3, Alain Munafo1

1Merck Institute for Pharmacometrics, Lausanne, Switzerland, an affiliate of Merck KGaA, Darmstadt
2Global BioStatistics, Merck KGaA, Darmstadt, Germany
3Global Clinical Development - Neurology, EMD Serono, Billerica, MA
Outline

1. Objective

2. Clinical Trial Simulation workflow

3. Evaluation of alternative treatment rules

4. Conclusions

Cladribine treatment rules | June 7, 2017
Cladribine exerts sustained effects in RRMS by selective depletion of lymphocytes.

A minority of patients develop Grade 3/4 lymphopenia at any time (25%, CLARITY study). Most of these occurred in patients receiving cladribine treatment when their absolute lymphocyte counts (ALC) were at Grade 2 or worse.

Proposed Risk Minimization: treatment guidelines

- Cladribine 3.5 mg/kg at Month 1 and 2 of Year 1 and 2
- Year 1
 - 1
 - 2
- Year 2
 - 3
 - 4

- Weekly treatment
- Postponement

Alternative rules:
Treatment postponements during Year 2 allowed in blocks of 1/2/3 months in patients with lymphopenia Grade 2-4 or 3-4.
- If, after three postponements, a patient’s ALC value had not recovered to Grade 0/1, the treatment would stop.
Assessing the impact of treatment guidelines on the occurrence of relapses requires clinical trial simulations

- Obtain projections for **Relapse Rate** (RR) and the **Absolute Lymphocyte Counts** (ALC) dynamics by accounting for treatment delays or cancellations in patients presenting lymphopenia of Grade 2-4.

- Investigate the **impact of postponement of dosing or cancellation of treatment** with cladribine tablets on the probability of being relapse free over time in RRMS subjects.
Outline

1. Objective
2. Clinical Trial Simulation workflow
3. Evaluation of alternative treatment rules
4. Conclusions
Satisfactory model of ALC vs. time and exposure

Prior ALC modeling information

Population PD modeling approach*

Indirect response model with cladribine stimulating the loss function (lymphocyte perish rate) through an E_{max} drug-effect relationship to cladribine exposure

Good description of ALC dynamics following treatment with cladribine according to different schedules

Good capabilities in predicting different CTCAE grades of lymphopenia

Credits: Pharmacometrics group at Uppsala University

*CLARITY, CLARITY Extension and Oracle Studies
Modelling shows that 3.5 mg/kg dose is already at the shoulder of exposure-efficacy curve

Prior RR modeling information

Population Repeated Time-to-Event (RTTE) model of qualifying relapses*

- Weibull hazard function with decreasing hazard over time
- **Inhibitory Emax** dose-effect relationship on hazard, using cumulative dose with implemented decay as effect driver

\[h(t) = h_0(t) \times \left(1 - \frac{E_{\text{max}} \times \text{Exp}(t)}{D_{50} + \text{Exp}(t)}\right) \]

Effect compartment exposure, linking the short systemic exposure to the long-lasting effect

- Baseline hazard \(h_0\) given by: \(h_0(t) = \lambda \gamma(t)^{\gamma-1}\)
- Dose adjusted for \(CR_{CL}(t)\) centered on population median
- IIV and covariate EXNB (number of exacerbation prior to study entry) on \(\lambda\)

Good description of the time to occurrence (and re-occurrence) of qualifying relapses
Showed that the **3.5 mg/kg cumulative dose is truly appropriated** in reducing the risk of relapses

CLARITY, CLARITY Extension and Oracle Studies
Simulation strategy relies on a complex workflow

1. **Exploratory and Graphical Analysis**
 - ALC model
 - RTTE model for RR
 - Correlation?

2. **Virtual subjects generation**
 - Covariate resampling

3. **Clinical Trial Simulation to reproduce CLARITY scenario**
 - ALC distributions at Week 49
 - Relapse-free survival (%)

4. **Simulation of alternative treatment rules**
 - Year 1
 - 1 2
 - Year 2
 - 3 4
 - Postponement
 - Any impact on Relapse-free survival (%)?

Simulx was employed for simulations, with models encoded in MLXTRAN

http://lixoft.com/products/simulx/
CLARITY was considered as the clinical trial to be simulated

Covariate and execution models

- **Target population**
- **Covariate Distribution Model**
- **Exclusion Criteria**
- **Trial Execution Model**
- **Replication of the Study**

- **Subjects with RRMS** from the Phase III cladribine trial (*CLARITY*)
- **Sampling** of model covariates from observed distributions by accounting for their relationships (covariance), and assignment to each virtual subject
- Covariates considered as constant (no time-varying)
- Patients with **baseline lymphopenia** Grade 1-4 (as part of the risk minimization plan)
- **Cladribine** total cumulative dose of **3.5 mg/kg** over 4 or 5 days at **Month 1 and 2 of Year 1 and 2**
- No randomization rules or deviations from the protocol
- Initial virtual population of **5000 subjects**
- Study **size increase** by blocks of 2000 subjects until model **output comparable** with observations

Outline

1. Objective
2. Clinical Trial Simulation workflow
3. Evaluation of alternative treatment rules
4. Conclusions
Generating individual virtual subjects representative of subjects in CLARITY study

Input-Output Model

Individual model parameters

Covariate Model

Physiologically reasonable covariate distributions

Decision tree for virtual population generation

Assessment of correlations among saturated random effects of the two models: $r^2(\beta_{\text{CL}, \text{Subject}}) \neq 0.99$

More than one fixed-effect parameter $\gamma_{\text{CL}, \text{Subject}}$ and γ_{SG} with $R^2 > 0.99$

No

Yes

Model simulations with
$\gamma_{\text{CL}, \text{Subject}}$ sampled from MVN($\mu_{\gamma_{\text{CL}, \text{Subject}}}$, $\Sigma_{\gamma_{\text{CL}, \text{Subject}}}$)
γ_{SG} sampled from MVN($\mu_{\gamma_{\text{SG}}}$, $\Sigma_{\gamma_{\text{SG}}}$)
X times resampling

Model simulations with
$\gamma_{\text{CL}, \text{Subject}}$ sampled from MVN($\mu_{\gamma_{\text{CL}, \text{Subject}}}$, $\Sigma_{\gamma_{\text{CL}, \text{Subject}}}$)
γ_{SG} sampled from MVN($\mu_{\gamma_{\text{SG}}}$, $\Sigma_{\gamma_{\text{SG}}}$)
X times resampling

Number of exacerbation prior to study entry

Female (N=3400)

Male (N=1600)
Using 5000 virtual patients, the simulation workflow could be validated, reproducing CLARITY scenario

ALC model simulations
Reproducing subject distributions within lymphopenia grades

RTTE model simulations
Reproducing proportions of subject not experiencing 1-6 relapses

Virtual patients treated with cladribine total cumulative dose of 3.5 mg/kg according to the CLARITY trial protocol
The simulation allowed to identify those virtual patients requiring postponement, based on their ALC observed at the end of Year 1

- Regardless of block definition (1, 2 or 3 months) only 3% of virtual subjects required two or more treatment postponements

92% of subjects treated without postponements

About 5% of subjects required only the first postponement

Less than 1% of subjects required treatment cancellation during Year 2

Alternative scenario 2:
Treatment postponements during Year 2 allowed in blocks of two months in patients with lymphopenia Grade 2-4

- Of those who qualified for postponements (lymphopenia Grade 2-4), less Grade 3-4 lymphopenia was observed at anytime during Year 2 when applying the postponement rules.
The dosing algorithms had no impact on the probability of having a relapse over the 2-year treatment duration

- No impact of treatment rules was observed (in the virtual population) on the probability of having 1-6 relapses within 24 months treatment window

- Differences in the clinical relevant outcome appear small, suggesting that treatment postponements during Year 2 do not lead to loss of efficacy
Outline

1. Objective
2. Clinical Trial Simulation workflow
3. Evaluation of alternative treatment rules
4. Conclusions
Postponing the Year 2 treatment is an appropriate risk mitigation measure for patients with lymphopenia Grade 2-4 at the end of Year 1

- **Alternative treatment rules** were investigated by obtaining projections for the Absolute Lymphocyte Counts (ALC) dynamics and Relapse Rate (RR) and in different scenarios.

- Results from this simulation analysis **support treatment guidelines** proposed to decrease risk of developing severe lymphopenia following cladribine treatment, while preserving cladribine efficacy on the considered clinical endpoint.

- As part of the **risk minimization strategy** to reduce the risk of lymphopenia, it is proposed to postpone cladribine treatment in year 2 until ALC have recovered to Grade 1 or better; should this not happen within 6 months, the treatment should be discontinued.
 - Very few subjects (1% or less) would not recover to Grade 1 or 0 within an additional 6 months.
 - In those who qualified for postponements (8% of virtual subjects), the proportion reaching Grade 3/4 lymphopenia at some time in the study is decreased (from 85% to 76%) when the mitigation rule is applied.
 - Such a delay of up to 6 months has essentially no effect on the probability of experiencing relapses during the second year of cladribine treatment.
Acknowledgements

Merck colleagues

- Clinical Team and Project Team
- Pascal Girard

Externals

- Prof. Marc Lavielle
- Pharmacometrics group at Uppsala University, especially Prof. Mats O. Karlsson, Siv Jönsson, Ana Novakovic, Emilie Schindler and Anders Thorsted