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Understanding sources of variability:
The variability attribution plot
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Objective

Understanding and explaining sources of variability in the data is a significant component of any
analysis. Clinical trial data with its many levels of hierarchy is particularly complex. Fortunately,
nonlinear mixed effect models (NLMEM) have proven to be well suited to handle this complexity,
and have become the quasi-standard for pharmacometric trial data analysis. However, it can be
challenging in practice to understand the complex interactions of parameter variability, residual
variability, covariates and the non-linear function.
In light of these complexities, the objective of this work was to introduce a novel model visualization

that allows attributing the different constituents of response variability over time.

Methods

This work considers NLMEM for continuous data with normal distribution in the two-stage
representation, i.e. observation j from subject i follows:

yij ∼ N (f (tij, ϕi), h(tij, ϕi)) ϕi = g(θ, ηi, ai)

where f (·) and h(·) are non-linear functions of the observation time tij and individual model
parameters ϕi. The individual model parameters are described by the non-linear function g(·) of
the fixed effects θ, the random effects ηi (ηi ∼ N (0, ω)) and covariates ai.

Derivation
From the law of total variance, the model variability can be split into residual unexplained variability
(RUV) and between-subject variability (BSV), i.e.

Var(yij) =
RUV︷ ︸︸ ︷

E (Var (yij|ϕi)) +
BSV︷ ︸︸ ︷

Var(E(yij|ϕi)) .

The BSV can then be further decomposed by successively conditioning the remaining variability on
groups of variables that contribute variability γi (random effects ηi and/or covariates ai) [1]:
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i , γ2
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i ]}
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Each term in the previous equation, as well as, the RUV constitute a variability component. They can
be approximated by linearizing the NLMEM [2] and then deriving the conditional variability for the
resulting linear mixed effect model.

Implementation
The visualization method was implemented using NONMEM, PsN, and R. First, PsN is used to
generate an augmented NONMEM control stream extracting the necessary derivative information
for the linearization. Finally, R is used to calculate the conditional variability expressions and plot
each variability component as stacked ribbon versus the independent variable.

Illustration model
The properties of this visualization are illustrated using a PKPD model with one-compartment first-
order absorption PK and an immediate effect Emax PD model [3], i.e.
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Figure 1: Model predicted PK and PD response (mean plus 95% prediction interval).
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Figure 2: Variability attribution plot for PK and PD outcomes of the example model. The plot
visualizes the variability contribution from the RUV as well as all BSV random effects. The creation
of this plot requires merely a model file and is fully automatized. A version of this graph is part of the
report for the PsN QA tool [4].
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Figure 3: Variability attribution plot including the effect of covariates. Covariates can be taken into
account by providing the mathematical expressions for ϕi to the algorithm. Covariates in FREM-type
models are automatically taken into account.
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Figure 4: Variability attribution plot with grouped sources. The algorithm permits to freely choose
the conditioning order as well as to group sources of variability, allowing to highlight particular aspects
of a model. This version of the previous plot shows a band for covariates, PK and PD random effects.

Conclusion

This new visualization provides insights into the importance of the many sources of variability in an
NLMEM. The gained understanding can guide model building decisions and assist in communicating
model properties.
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