

Modeling of the concentration-effect relationship for piperaquine in preventive treatment of malaria

Martin Bergstrand¹, François Nosten^{2,3,4}, Khin Maung Lwin⁴, Mats O. Karlsson¹, Nicholas White^{2,3}, Joel Tarning^{2,3}

- ¹ Department of Pharmaceutical Biosciences, Uppsala University
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- ³ Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- ⁴ Shoklo Malaria Research Unit (SMRU), Mae Sod, Thailand

Background

Malaria statistics (estimates) according to WHO

- Half of the worlds population live in areas at risk of malaria transmission
- In 2010, an 216 million clinical episodes, and 655 000 deaths
- 86% of the malaria deaths in children under 5 years

Chemoprevention

- Primarily in Children and Pregnant (Intermittent Preventive Treatment (IPT))
- WORLD MALARIA REPORT 2011
- Commonly used treatment alternatives has in many places been rendered ineffective by the development of resistance (i.e. sulfadoxine-pyrimethamine "SP" and chloroquine)

Randomized, Double-Blind, Placebo-Controlled Trial of Monthly versus Bimonthly Dihydroartemisinin-Piperaquine Chemoprevention in Adults at High Risk of Malaria

Khin Maung Lwin,^a Aung Pyae Phyo,^a Joel Tarning,^{b,c} Warunee Hanpithakpong,^b Elizabeth A. Ashley,^{a,b,c} Sue J. Lee,^{b,c} Phaikyeong Cheah,^{b,c} Pratap Singhasivanon,^d Nicholas J. White,^{b,c} Niklas Lindegårdh,^{b,c} and François Nosten^{a,b,c}

Shoklo Malaria Research Unit, Mae Sod, Thailanda; Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailandb; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdome; and Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailandd

- Randomized, placebo controlled trial
- Northwest border of Thailand
- Treatment regimens:
 - 3 tablets (120 mg DHA and 960 mg PQ) dosing on three consecutive days
 - Repeated every monthly or every second month (bimonthly)
- 1000 healthy adult male subjects 400+400+200 (placebo)
- Follow-up weekly for 9 months of treatment
 - PQ plasma concentration
 - Blood smears for parasite detection

FIG 1 Kaplan-Meier survival curves for malaria-preventive efficacy in the three groups. Dihydroartemisinin-piperaquine treatment doses (over 3 days) monthly (DPm) or every 2 months (DPalt) or an identical placebo were given with or without 6.4 g of fat for each dose administered.

DHA = Dihydroartemisinin PQ = Piperaquine

Objectives

- Characterize the concentration-effect relationship for the malaria preventive effect of piperaquine
- 2. Utilize the developed model and literature information on PK to simulate expected outcome in IPT populations:
 - Children
 - Pregnant
- 3. Use simulations to investigate the expected consequence of potential piperaquine resistance
- 4. Identify target observed PQ plasma concentration to guide treatment
- 5. Explore alternative dosing regimens for chemoprophylaxis with DHA-PQ [1]

[1] Poster III-20:

Jesmin Lohy Das et al. Simulations to investigate new Intermittent Preventive Therapy Dosing Regimens for Dihydroartemisinin-Piperaquine.

PAGE 22 (2013) Abstr 2923 [www.page-meeting.org/?abstract=2923]

Model building procedure

1. Model piperaquine PK

- Monthly PK observations
- Analyzed with a frequentist prior based on a previously developed PK model [2, 3]

2. Establish baseline time-to-event model

(i.e. natural hazard of malaria infection in study)

- Subset only placebo cohort
- Explored potential predictors of baseline hazard (seasonal variations and demographics etc.)

Establish PKPD model

- Explored concentration-effect relationship
- Account for DHA effect and biological lag-time

^[2] Tarning, J., et al., Population pharmacokinetics of dihydroartemisinin and piperaquine in pregnant and nonpregnant women with uncomplicated malaria. Antimicrobial Agents and Chemotherapy, 2012. 56(4)

^[3] Gisleskog PO, Karlsson MO, Beal SL. Use of prior information to stabilize a population data analysis. J Pharmacokinet Pharmacodyn. 2002;29(5-6):473-505.

Visual Predictive Check: PQ PK model

- Solid red line => Observed median red field => corresponding 95% confidence interval based on model simulations
- Dashed red lines => Observed 90% prediction interval blue fields => corresponding 95% confidence interval based on model simulations

Baseline time-to-event model

Constant hazard model with:

- A seasonal peak in malaria transmission rate from May throughout June
 ⇒ hazard ↑ 217%
- Mixture model for baseline hazard
 - Probability of belonging to a low hazard population estimated to 0.7
 - The low hazard population:0.25 infections/year
 - High hazard population:3.77 infections/year
- Covariate relationship:
 - Age on mixture probability
 ⇒ generally higher hazard for younger subjects

PKPD model

- The inclusion of categorical treatment effects were statistically significant (p<<0.001) (i.e. separate hazard for placebo, monthly and bi-monthly dosing)
- A continuous PQ concentration effect relationship with a single estimated parameter, IC₅₀, clearly outperformed the categorical effect model with two parameters.
- Model fit was improved further (p<0.001) by assuming a sigmoidal concentration-effect relationship (i.e. estimated Hill factor, γ)

$$Def(t) = 1 - \frac{C(t)^{\theta_{\gamma}}}{\theta_{IC_{50}}^{\theta_{\gamma}} + C(t)^{\theta_{\gamma}}}$$

$$h(t \mid MIX_i = 1) = \theta_{BHz_1} \cdot Season(t) \cdot Def(t)$$

$$h(t | MIX_i = 2) = \theta_{BHz_2} \cdot Season(t) \cdot Def(t)$$

A potential issue for PKPD

- The concentrations at time of diagnosed malaria is not the most relevant
- The critical point is at the start of the parasite blood stage (parasite release from liver)
- If PQ plasma concentrations are sufficient at this stage there will be no symptomatic infection

The solution: Event time censoring interval

Account for DHA effect

- Piperaquine is given in combination with DHA which has a very potent effect but also a very short half-life (1-2 hr)
- Ongoing infections that is not visible on a microscope slide (approx. <10⁷) will be censored due to the curative effect of DHA (and PQ)
- Assumption: rapid growth (x10 every 48 h) and high inoculation (10^5) \Rightarrow hazard assumed to be zero during 4 days prior to DHA dosing
 - ! Improved model fit
 - ! Important assumption for extrapolations into more frequent dosing

Accounting for lag-time and DHA effect

- \Rightarrow Small increase in estimated IC₅₀ value 6.3 -> 7.0 ng/mL
- \Rightarrow Decreased hill-factor (γ): 3.6 -> 2.8 (i.e. slightly less steep concentration-effect relationship)
- ⇒ Generally better precision for all model parameters
- The impact was modest due to the long terminal t_{y_2} of PQ

Final PKPD model

Parameter	Estimate (RSE, %)
Pharmacodynamics	
Baseline hazard mixture 1, BHz ₁ (year ⁻¹)	3.77 (10)
Baseline hazard mixture 2, BHz ₂ (year ⁻¹)	0.25 (10)
Probability of mixture 2, PMIX-2	0.70 (6)
Amplitude of seasonal peak, AMP	2.17 (27)
Center of seasonal peak, PT (months)	4.93 (3)
Duration of seasonal peak, WD (months)	2.59 (9)
Age on mixture 2 probability, AGE-PMIX-2	1.64 (36)
Pharmacokinetic – Pharmacodynamic interaction	
PQ IC ₅₀ (ng/mL)	6.96 (13)
Hill-factor, γ	2.79 (15)

Solid lines => Kaplan–Meier survival curve Corresponding fields => simulation based 95% confidence interval

IPT in children

ARTICLES

- What is the clinical relevance of the previously established lower exposure in children (with recommended dosing)?
- Translate to IPT treatment

nature publishing group

Open

Population Pharmacokinetics and Pharmacodynamics of Piperaquine in Children With Uncomplicated Falciparum Malaria

J Tarning^{1,2}, I Zongo³, FA Somé³, N Rouamba³, S Parikh⁴, PJ Rosenthal⁴, W Hanpithakpong¹, N Jongrak¹, NPJ Day^{1,2}, NJ White^{1,2}, F Nosten^{1,2,5}, J-B Ouedraogo³ and N Lindegardh^{1,2}

¹Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; ²Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; ³Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso; ⁵Department of Medicine, University of California, San Francisco, San Francisco, California, USA; ⁵Shoklo Malaria Research Unit, Mae Sot, Thailand. Correspondence: J Tarning (Joel@tropmedres.ac)

Received 20 June 2011; accepted 6 September 2011; advance online publication 18 January 2012. doi:10.1038/clpt.2011.254

CLINICAL PHARMACOLOGY & THERAPEUTICS

Note:

Capillary piperaquine concentrations in graph $(\approx 1.4 \times \text{plasma})$ concentrations

IPT in children

- PK model and dosing algorithms according to Tarning et al. 2012
- PD and PKPD parameters according to presented model
- Monthly dosing (all subjects start 1st of January)

PQ resistance

- The estimated IC_{50} value corresponds well with reported values on in vitro IC_{50} values on parasite growth
 - Estimated in vivo IC_{50} (on hazard) = 7 ng/mL
 - Reported in vitro IC_{50} (parasite growth) = 4.2 42 ng/mL (most recent reported value 9 ng/mL [4])
- Piperaquine resistance have been reported to increase the *in vitro* IC₅₀ value up to 100 fold both when resistance was induced *in vitro* and observed in field isolates [4]
- Based on a proportionality between in vitro and in vivo IC₅₀, simulations
 was performed to predict the consequence of different degrees of PQ
 resistance

^[4] Richard T. Eastman et al. Piperaquine Resistance Is Associated with a Copy Number Variation on Chromosome 5 in Drug-Pressured Plasmodium falciparum Parasites. Antimicrob Agents Chemother. 2011 August; 55(8): 3908–3916

PQ resistance

Survival with altered IC₅₀

- Simulation of monthly dosing in the study population with altered IC₅₀
- A modest resistance
 (2-4 x IC₅₀) drastically alter
 the expected outcome
- A 10-fold increase or more makes the treatment virtually ineffective

Conclusions

- A in vivo concentration-effect relationship for the malaria preventive effect of PQ has been established
- The established model was useful in translating observed results from a healthy male population to that expected in target populations and under other circumstances
 - A new dosing recommendation for PQ in children has the potential to lower the yearly malaria incidence with 50% for children in general and by 70% for the 8 to 12 kg weight strata

Thanks to colleagues at:

and the Clinical Pharmacology Department in particular

The Pharmacometrics research group at

