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Building up a posteriori percentiles  
for Therapeutic Drug Monitoring 

Using Monte Carlo (MC) simulations  from the population PK model of VRC in [1], build a posteriori percentiles to: 

 Determine the probability that future VRC concentrations lie within a prespecified therapeutic interval under a fixed 

(400 mg b.i.d.) or an individualized dosing regimen for a simulated patient with normal hepatic function. 

 Compare the power of both a priori and a posteriori 90% prediction intervals for detecting a change in drug 

disposition following e.g. the onset of severe hepatic cholestasis (SHC), or for the identification of treatment 

adherence issues (non-compliance). 

Introduction 

Population pharmacokinetic (PK) models can produce percentiles from the predictive distribution of drug plasma 

concentrations at a particular time point t (hereafter referred to as a priori percentiles), which depict the likelihood of 

observed concentrations at time t in a population of interest. These can be used in Therapeutic Drug Monitoring 

(TDM) to assess the adequacy and expectedness of concentration measurements in a patient when the drug 

features a high inter-individual kinetic variability coupled with tight therapeutic margins e.g. Voriconazole (VRC). 

When past concentration measurements are available on a patient, these can be used to compute a posteriori 

percentiles i.e. percentiles from the posterior predictive distribution of concentrations. Conceptually, the posterior 

predictive distribution refers to the expected distribution of concentrations at time t in a hypothetical sub-population of 

patients having the exact same vector of past observations (and covariate values) as that of the patient under 

monitoring. Consequently, a posteriori prediction intervals are narrower compared to their a priori counterparts, which 

possibly renders them more powerful for detecting changes in drug disposition and/or adherence issues for the 

patient being monitored.  

Objectives 

Methods 

Simulated trough concentrations for N=10’000 fictive patients with normal hepatic function and no co-medication 

were generated using the VRC population PK model developed in [1]. The simulation design considered the oral 

administration of VRC b.i.d. with plasma concentrations measured every 24 hours over a period of 10 days. Two 

situations were simulated: 

(a) All patients receive a fixed oral dose of 400 mg VRC b.i.d. 

(b) After two initial oral doses of 400 mg VRC, each patient receives 

an adjusted dose b.i.d. so that his/her predicted VRC trough 

concentration (a posteriori) at steady-state lies as close as 

possible to the center of the therapeutic interval, defined as the 

geometric mean of its limits (1.5-4.5 mg/mL as recommended in 

[1]). The optimal dose was selected on a grid ranging from 0 to 

1’000 mg, with 50 mg increments (corresponding to the smallest 

oral VRC dose available on the market). 

N=10’000 patients 

Fixed dose 

400 mg b.i.d. 
Individualized dose 

0-1’000 mg b.i.d. 

(adjusted every 24h) 

TDM 

(a) (b) 

The proportion of patients with simulated VRC trough concentrations above / within / below the therapeutic interval 

was calculated under each design.  
 

For a single patient, 90% prediction intervals for trough concentrations at the measurement occasions were 

calculated both a priori (i.e. using the patient’s covariate information only) and a posteriori (i.e. using both the 

patient’s covariate information and his/her past concentration measurements). The posterior distribution of random 

effects was sampled using the Sampling Importance Resampling (SIR) algorithm [2,3] while treating population 

parameters in the model as known. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The simulation design was slightly altered to estimate the power of detecting a possible change in drug disposition or 

a treatment adherence issue. The onset of SHC (that corresponds to a drop of 55% in VRC clearance according to 

[1]) was simulated from day-7 of therapy (starting at t=160 hours). Treatment non-compliance was simulated by a 

single missing dose at t=156 hours (i.e. 2nd dose in day-7 of therapy). SHC onset and treatment non-compliance 

were simulated separately. Under both settings, all patients (restricted to N=2’000 for computational reasons) 

received an individualized dosage with adaptation every 24 hours (according to design b above) while assuming a 

normal hepatic function and full treatment adherence. 
 

The power to detect the effect of such change was calculated as the (one-sided) probability for an observed 

concentration to lie above the 95% percentile (SHC onset) or below the 5% percentile (treatment non-compliance) of 

the predictive distribution, both a priori or a posteriori.  
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Conclusions 

When past concentration measurements are available for a patient under monitoring, a posteriori percentiles:  

 depict the likelihood of future observed concentrations in the patient, under the current or an adapted dosing 

regimen, assuming that the patient’s condition remains stable. 

 become narrower (asymptotically bounded by the intra-individual variability) as more past observations are 

considered, since an increasing part of the inter-individual variability is explained by the patient’s history. 

 increase the chance of detecting major changes in drug disposition and/or treatment adherence issues 

compared to the prior predictive distribution (although power remains globally weak in our example). 

 can be graphically communicated to the attending physician, who can then judge whether a measured 

concentration is both expected and appropriate for his/her patient. 

Results 

Figure 2: Distribution of adjusted doses at various time points when simulated patients are undergoing TDM (N=10’000).   
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Figure 1: Proportion of patients (N=10’000) with trough concentration above / within / below the therapeutic interval proposed in [1] (1.5-4.5 mg/L) under a fixed dosing 

regimen (400 mg b.i.d.) or using TDM with individualized bayesian dosage adaptation. 

Figure 5: Statistical power i.e. probability to detect a change in drug disposition due to SHC occuring at t=160 hours (left panel) or due to a missed dose at t=156 hours 

(right panel) using both a priori and a posteriori 90% prediction intervals when patients undergo TDM with individualized dosage adaptation (N=2’000 simulations). The 

power corresponds to a one-sided test where each simulated concentration is labelled as atypical if it falls above the 95% percentile (left) or below the 5% percentile 

(right) of the predictive distribution. 

Figure 3: Simulated trough concentrations for one illustrative patient under either a fixed dosing regimen (400 mg b.i.d.) or an individualized dosing regimen using TDM, 

with a priori and a posteriori 90% prediction intervals (PI) for trough concentrations, and a posteriori probabilities for future trough concentrations to lie above / within / 

below the therapeutic interval (N=10’000 simulations).  

Figure 4: 90% prediction intervals (PI) with median a priori and a posteriori when considering incrementally the first five simulated concentrations of the illustrative 

patient in figure 3 under each dosing regimen (N=10’000 simulations). The vertical arrow refers to the therapeutic interval proposed in [1] (1.5-4.5 mg/L). 


