

<u>Camille Vong,</u> Steve Riley, Lutz O. Harnisch PAGE 27, May 30th 2018

Power Assessment for Hierarchical Combination Endpoints Using Joint Modelling of RTTE and TTE Models versus Finkelstein-Schoenfeld Method

Transthyretin Amyloidosis (ATTR)

- Transthyretin (TTR) is a circulating plasma protein that normally exists as a stable homotetramer. In diseased patients an unstable tetramer structure leads to formation of amyloid fibrils and subsequent tissue deposition in organs/tissues.
- Two distinct clinical presentations of the amyloidosis: transthyretin familial amyloid polyneuropathy (ATTR-FAP) when the peripheral nerves are primarily affected and transthyretin amyloid cardiomyopathy (ATTR-CM) when the heart is primarily affected
- ATTR-CM is a late onset disease and is rarely diagnosed. Death in most patients with cardiomyopathy is from cardiac causes, including sudden death, heart failure, and myocardial infarction.

It's a RARE Disease

Cardio-vascular trial sample size ~10 000 - 20 000 patients

It's a RARE Disease

Cardio-vascular trial sample size ~10 000 - 20 000 patients

ŤŤŤŤŤŤŤŤŤŤŤŤŤŤŤŤ ŤŤŤŤŤ

"Approximately 800-1000 diagnosed patients with ATTR-CM worldwide."¹

n = ~ 400 available

¹ Ando Y et al. Guideline of transthyretin-related hereditary amyloidosis from clinicians. Orphanet Journal of Rare Diseases. 2013;8:31

It's a RARE CARDIO-VASCULAR Disease

Cardio-vascular trial sample size ~10 000 - 20 000 patients

Survival is the golden standard CV-related endpoint:

Low power to detect drug effect with the available sample size, too long to show benefit alone

RDOSE=High Dose + RDOSE=Low Dose + RDOSE=Placebo

Hence, use of an ancillary longitudinal endpoint:

Frequency of cardiovascular-related hospitalization visits

Objectives

- Compare power performances to detect a (small) drug effect for the purpose of informing a dose recommendation for a rare disease
 - Apply the non-parametric Finkelstein-Schoenfeld (FS) test
 - Enhance trial analytical metric with a model-based approach
 - Exposure Time-to-Event (TTE) for survival data
 - Exposure TTE with hospitalization frequency as time-varying covariate (TTE-COV)
 - Exposure Repeated Time-to-Event (RTTE) for hospitalization frequency
 - Joint Exposure Repeated Time-to-Event and Time-to-Event (Joint RTTE+TTE)

Methodology Framework – Assumptions

⁵ Nyberg J. Simulating large time-to-event trials in NONMEM. <u>https://www.page-meeting.org/default.asp?abstract=3166</u> ⁶ Ueckert S. Accelerating Monte-Carlo Power Studies through Parametric Power Estimation. J Pharmacokinet Pharmacodyn. 2016 Apr;43(2):223-34

- Prior regulatory history in cardiac medical device trials ^{3,4}
- Non-parametric hierarchical & pairwise test derived from patient-to-patient comparison

	Ť ∔	Ē	Ť	Ť+	Ť	
Ť +	0	-1	-1		-1	
Ť	+1	0		+1		
Ť	+1		0	+1		
Ť+		-1	-1	0	-1	
Ť	1+			+1	0	

1) Black and grey died

- Prior regulatory history in cardiac medical device trials
- Non-parametric hierarchical & pairwise test derived from patient-to-patient comparison

	€	•===	•==	·==	·	
Ť +	0	-1	-1	-1	-1	
Ť	+1	0		+1		
Ť	+1		0	+1		
Ť+	+1	-1	-1	0	-1	
Ť	1+			+1	0	

Black and grey died but...
Black died before grey

- Prior regulatory history in cardiac medical device trials
- Non-parametric hierarchical & pairwise test derived from patient-to-patient comparison

	! +	·F	Ē	€	Ē	
Ť +	0	-1	-1	-1	-1	
Ť	+1	0		+1		
Ť	+1		0	+1		
Ť+	+1	-1	-1	0	-1	
Ť	1+			+1	0	

- Prior regulatory history in cardiac medical device trials
- Non-parametric hierarchical & pairwise test derived from patient-to-patient comparison

	€	•===	•===	€	·	
İ +	0	-1	-1	-1	-1	
Ē	+1	0		+1		
Ť	+1		0	+1		
Ť+	+1	-1	-1	0	-1	
Ť	1+			+1	0	

- Prior regulatory history in cardiac medical device trials
- Non-parametric hierarchical & pairwise test derived from patient-to-patient comparison

	€	Ē	•===	€	·	
Ť +	0	-1	-1	-1	-1	
Ē	+1	0		+1		
Ļ	+1		0	+1		
Ů+	+1	-1	-1	0	-1	
Ť	1+			+1	0	

- Prior regulatory history in cardiac medical device trials
- Non-parametric hierarchical & pairwise test derived from patient-to-patient comparison

	€	•===	•===	€	·	
Ť +	0	-1	-1	-1	-1	
Ē	+1	0	+1	+1		
Ť	+1	-1	0	+1		
Ť+	+1	-1	-1	0	-1	
Ť	1+			+1	0	

- Prior regulatory history in cardiac medical device trials
- Non-parametric hierarchical & pairwise test derived from patient-to-patient comparison

	€	•===	•===	€	·	
İ +	0	-1	-1	-1	-1	
Ē	+1	0	+1	+1	+1	
Ť	+1	-1	0	+1	-1	
Ť+	+1	-1	-1	0	-1	
Ť	1+	-1	+1	+1	0	

- Prior regulatory history in cardiac medical device trials
- Non-parametric hierarchical & pairwise test derived from patient-to-patient comparison

	€	•===	•===	€	·	U _i
İ +	0	-1	-1	-1	-1	-4
Ē	+1	0	+1	+1	+1	+4
Ť	+1	-1	0	+1	-1	0
Ť+	+1	-1	-1	0	-1	-2
Ť	1+	-1	+1	+1	0	+2

In each stratrum

- Prior regulatory history in cardiac medical device trials
- Non-parametric hierarchical & pairwise test derived from patient-to-patient comparison

	€	•===	•===	€	Ē	U _i
Ť +	0	-1	-1	-1	-1	-4
Ť	+1	0	+1	+1	+1	+4
Ť	+1	-1	0	+1	-1	0
İ +	+1	-1	-1	0	-1	-2
Ť	1+	-1	+1	+1	0	+2

PATIENTS

Results: FS U-score distributions

Results: FS U-score distributions

Drawbacks with Finkelstein-Schoenfeld

- FS maintains the hierarchy (Mortality > HO), but
 - Ignores the assessment of the HO endpoint in patients who die in the trial
- FS ignores the longitudinal aspect of the events
 - Drop-out if it's a competitive risk to death or dose interruption not accounted for
- **FS** cannot test a dose-response if more than 1 active group
 - Differentiation of doses requires multiple subgroup comparisons
- FS is based on fixed set of strata (ie. categorical covariates)
 - Integration of continuous covariates only if categorized
 - Smaller N in each stratum to perform the test

Joint RTTE + TTE

- Shared random effects (log-normal)
- Link function as an estimated scaling factor (on baseline and/or on shape)
- \$MIX to have 40% of the population without an event
- DRUG effect = Emax reduction on the baseline hazard of RTTE/TTE (and/or shape of Weibull)
- One-inflated negative binomial for hospitalization duration

Joint RTTE + TTE

- Shared random effects (log-normal)
- Link function as an estimated scaling factor (on baseline and/or on shape)
- \$MIX to have 40% of the population without an event
- DRUG effect = Emax reduction on the baseline hazard of RTTE/TTE (and/or shape of Weibull)
- One-inflated negative binomial for hospitalization duration

Results : Scenario A - similar placebo/low dose

Method	FS	TTE	TTE-COV	RTTE	Joint RTTE+TTE	Method	FS	TTE
Power *(%)	10	27 (77%)	23 (69%)	75 (90%)	79 (93%)	Power *(%)	37	29 (77%)

42 (60%)

65 (95%)

42 (76%)

Results : Scenario B - similar low/high dose

Method	FS	TTE	TTE-COV	RTTE	Joint RTTE+TTE	Method	FS	TTE	TTE-COV	RTTE	Joint RTTE+TT
Power *(%)	17	20 (67%)	19 (62%)	71 (83%)	70 (83%)	Power *(%)	40	18 (50%)	28 (53%)	33 (77%)	49 (72%

Results : Scenario C – Emax relationship

liiou	F3	116	116-000	KIIE	RTTE+TTE	IVI
er *(%)	13	20 (77%)	23 (63%)	61 (86%)	62 (94%)	Pow

Method	FS	TTE	TTE-COV	RTTE	Joint RTTE+TTE
Power *(%)	44	30 (85%)	54 (79%)	56 (92%)	75 (96%)

Pov

Results : All scenarios type I error rates

Correlation	Endpoint	Method	Type I* (%)
	Mortality HO data	FS	NA
R ² = 1	Mortality data only	TTE	4 (43%)
	Mortality HO data	TTE-COV	7 (45%)
	HO data only	RTTE	7 (58%)
	Mortality HO data	Joint RTTE+TTE	2 (57%)
	Mortality HO data	FS	NA
R ² = 0	Mortality data only	TTE	2 (30%)
	Mortality HO data	TTE-COV	3 (32%)
	HO data only	RTTE	4 (37%)
	Mortality HO data	Joint RTTE+TTE	2 (17%)

Summary

- Implementation of a model-based approach to link the probability of survival and the probability of hospitalization events.
- In general, the joint RTTE+TTE and the RTTE methods provided the <u>highest power</u> to detect a drug effect.
 - While correlated, the gain of power from the joint RTTE+TTE model is very moderate.
 - While uncorrelated, the joint RTTE+TTE model added extra power by acknowledging the additional information from the TTE data.
 - FS results were superior to TTE alone in general, but vary across the scenarios.
 - Type I error rates were controlled in general and convergence rates with an Emax model show adequate robustness of the models in power assessment.
- Challenges in introducing drug effects and characterizing the underlying relationship if multiple confounders exist. In case of informative dropout, a dropout model can be implemented but may be competitive to mortality.
- Hierarchical metrics in power assessment could mimic FS decision rules.
- Smaller sample sizes to detect a treatment effect in future trials could be achieved using this methodology.

Acknowledgment

- Jeffrey H Schwartz
- Balarama Gundapaneni
- Daniel Meyer
- Steve Gibbs
- Ken Salatka
- Crima Shah
- Vijayakumar Sundararajan
- Tim Nicholas
- Yea Min Huh
- Sridhar Duvvuri
- Jae Eun Ahn
- Chay Lim

And:

Rare disease patients in the study

THANK YOU !

