

Impact of renal transporters on pediatric renal clearance using PBPK modelling

Sînziana Cristea¹, Elisa A.M. Calvier¹, Amin Rostami-Hodjegan^{2,3}, Elke H.J. Krekels¹, Catherijne A.J. Knibbe^{1,4}

Cluster Systems Pharmacology

INTRODUCTION

Active transport can have an important impact on renal clearance (CL_R).

The influence of transporter maturation on CL_{R} in children has not been studied in detail.

Physiology-based models that incorporate maturation of active transporters are needed to predict realistic CL_R across the pediatric agerange.

Aim: To develop a PBPK function to study the impact of renal transporters and their maturation on CL_R for different pediatric age-ranges and drug properties.

METHODS (1)

For CL_R simulations, published PBPK functions (Equation 1)¹ and *in vitro-in vivo* (Equation 2)² extrapolations were used.

Maturation functions were included for plasma protein binding³, kidney weight⁴, renal blood flow⁵, glomerular filtration rate⁶ and transporters capacity⁷.

Abundance and the number of proximal tubule cells were kept at adult values^{8,9}.

21600 hypothetical drugs were generated and

CONCLUSION

We made the first pediatric PBPK function to assess the contribution of active tubular secretion to CL_{R} in children:

- The contribution of active tubular secretion is important and is dependent on transporter abundance and intrinsic clearance. Active transport is likely to be the primary elimination route for certain drugs.
- Quantifying maturation of transporter abundance and activity, could lead to improved predictions of CL_R in children.

their CL_R was simulated for 11 virtual individuals with realistic demographics⁸ for ages between 1 day and 35 years.

• The function for extrapolation of CL_R from adults to children can improve dosing optimization in the pediatric population.

METHODS (2)

RESULTS

- Impact of active transports on CL_R remains fairly constant for all ages (Figure 1) for different relative abundance factors (RAF) and intrinsic clearance (CL_{int.T}) values.
- For CL_{int,T} values lower than 50 µl/min, RAF is limiting the contribution of active transport on CL_R, with low impact for high CL_{int,T} values (Figure 1).
- For extremely high CL_{int,T} values (i.e., > 589 µl/min), the impact of overall maturation of all system-specific parameters on CL_R is low (Figure 1).
- GFR and active tubular secretion are increasing proportionally with f_u (Figure 2A). \bullet
- When GFR is the main driver of CL_R (i.e., CL_{int,T} is low), the maturation of the transporters capacity (mat_{TC}) has little impact on CL_R (Figure 2B).
- Disregarding the mat_{TC} could yield a difference of 41-303% in children younger than 1 year. This difference increases with decreasing f_{II} (Figure 2B).

Figure 1 - Contribution of GFR (orange) and active secretion (blue) as a percentage of the total renal clearance (CL_R). Figure 2A - Impact of overall maturation (age) and protein binding (f_u) on GFR (blue – dashed), active secretion (**black**– dotted) and total renal clearance (orange – solid) for CL_{int.T}. of 132.96 µl/min. Figure 2B - Impact of maturation of the transporters capacity (mat_{TC}) on CL_R versus age for low (0.74 µll/min), median (49.91 µll/min) and high (588.7 µll/min) CL_{int.T} values and for low (0.05) and high (0.95) fraction unbound (f_u) with % difference representing the difference between CL_R with or without the mat_{TC} included.</sub>

Leid	ersiteit en herlands
------	----------------------------

AFFILIATIONS ¹Leiden Academic Center for Drug Research / Division of Pharmacology, Leiden University, ¹|amei 2009 The Netherlands ³|ohnson 2006 ²Simcyp (A Certara Company), Blades Enterprise Centre, Sheffield, UK ⁵Simcyp ³Manchester Pharmacy School, Manchester University, Manchester, UK ⁴St. Antonius Hospital, Nieuwegein, The Netherlands

REFERENCES ²Neuhoff 2013 ⁴Chen 2006; ⁶Salem 2015; ⁷DeWoskin 2009 ⁸ICRP 2002

Discover the World at Leiden University