
Are Datasets for Nonlinear Mixed-Effects Models Large Enough For a 
Bootstrap to Provide Reliable Parameter Uncertainty Distributions? 

Ronald Niebecker,  Mats O. Karlsson 

Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden 

Conclusions 

Background 

[1] Karlsson et al., J Pharmacokinet Biopharm. 1998;26(2):207–46. 
[2] Wählby et al., Br J Clin Pharmacol. 2004;58(4):367–77. 
[3] Grasela et al., Dev Pharmacol Ther. 1985;8(6):374–83. 
[4] Beal et al., NONMEM user’s guides. Icon Development Solutions, Ellicott City, MD, USA; 

1989–2009. 
[5] Lindbom et al., Comput Methods Programs Biomed. 2005;79(3):241–57. 

• Nonparametric bootstrap is a frequently employed method to determine 
parameter uncertainty distributions. 

• Compared to using bootstrap to calculate a single statistic from a vector of 
observations, application of bootstrap to assess uncertainty in nonlinear-mixed 
effects (NLME) models is more complex, due to  

• Simultaneous estimation of multiple parameters 
• Hierarchical models with ≥2 levels of random effects 
• Data-driven model development  
• Model misspecification 
• Heterogeneous designs including covariate distributions 

• Concerning dataset size, the prerequisites for bootstrap to perform well have 
rarely been investigated. 

Results 

Methods 

For each investigated combination of model and dataset, three dOFV 
distributions were generated and visually assessed (Fig. 1). 
 
 
 
 
 
 
 
 
 

Both real data [1–3] and simulation examples were investigated (Tab. 1). 
 
 
 
 
 
 
 
 
 
Assessment of parameter uncertainty 
• Confidence intervals (CIs) determined by bootstrap (1000 samples) and 

stochastic simulation and reestimation (SSE, 1000 samples) were compared. 
• For simulation example II, coverage based on 100 bootstraps each for three 

different dataset sizes was computed. 
 

The analysis was carried out in NONMEM 7.2 [4] aided by PsN [5]. 

• This analysis showed that with regard to providing uncertainty 
estimates, bootstrap may be unsuitable already for NLME 
analyses where datasets would commonly be considered “large 
enough”. 

• The bootstrap dOFV distribution provides an easy way to assess 
if bootstrap results in parameter vectors contradicted by the 
original data. 

Figure 1. Generation of dOFV distributions. 

Real data examples 

• For the investigated examples, 27% to 51% of the bootstrap dOFV values 
exceeded the 95th percentile of the theoretical dOFV distributions (Fig. 2). 

• Bootstrap based on simulated datasets of equal size confirmed these findings. 
For 8-times increased dataset sizes, bootstrap dOFV distributions converged to 
the theoretical and reference distributions, which were superimposed (Fig. 2). 

Simulation examples 
• Similar to the real data examples, bootstrap dOFV distributions converged to 

the theoretical dOFV distribution for increased datasets (Fig. 3). 

Figure 2a, b: dOFV distributions for phenobarbital (a) and pefloxacin (b). Left panels contain dOFV 
distributions from bootstrap based on real data, plus reference and theoretical dOFV distributions. 
Middle and right panels: bootstrap dOFV distributions based on 10 bootstraps each, for same-sized 
and 8-times increased simulated datasets; theoretical dOFV distribution superimposed (black). 

Figure 3a, b: Bootstrap dOFV distributions for simulation example I (a) and II (b), based on 
10 bootstraps (a)/100 bootstraps (b) each, theoretical dOFV distribution superimposed (black). 

• CIs from bootstrap more closely approximated CIs based on SSE especially for 
random-effects parameters; coverage improved for larger datasets (Fig. 4). 

Figure 4a, b, c: Median bootstrap CI relative to CI from SSE, parameters normalised to true value 
(a,b) and 60%, 80% and 95% coverage rates with 95% CI (c) based on simulation example II. 
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• Explore whether typical combinations of model complexity and 
dataset size allow for appropriate behaviour of bootstrap. 

• Introduce bootstrap delta objective function value (dOFV) 
distributions as a method to diagnose whether a bootstrap will 
not provide appropriate parameter uncertainty distributions. 
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Example Model Parameters Individuals Observations/ 
Individual 

Moxonidine [1] Linear 1-compartment model with 
first-order absorption, lag time 12 74 14 

Pefloxacin [2] Linear 1-compartment model with 
IV bolus administration 10 74 4.6 

Phenobarbital [3] Linear 1-compartment model with 
IV bolus administration 7 59 2.6 

Simulation I Linear 1-compartment model with 
IV bolus administration 6 20–600 2–4 

Simulation II Emax model with baseline 7 20–500 4 

Table 1: Model characteristics of real data and simulation examples 
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