Wilhelm Huisinga

Computational Physiology Group Hamilton Institute/NUIM, Ireland Physiologically-based PK/PD modelling, mathematical model reduction and a mechanistic interpretation of simple empirical models

PAGE 2010 Berlin, Jun 9th 2010

www.hamilton.ie

Different modeling approaches to analyze clinical data ...

The benefits

- 1. Physiologically based PK model are mechanistic by design. \rightarrow Mechanistic interpretation of classical compartment models
- 2. Properties of lumped models for a number diverse drugs.
 - → design criteria for classical compartment models, examining e.g., the 'elimination at the point of observation' assumption
- 3. Physiologically based PK model allow to generate virtual populations, including critical sub-populations
 - → important characteristic of the population will appear as covariates in the lumped model parameters (using 1.)

A very brief introduction to physiologicallybased pharmacokinetic models

Whole-body compartmental model structure

E.g., Poulin /Theil, J Pharm Sci. (2002); Luepfert/Reichel, Chem Biodiv, (2005); Jones et al, AAPS J (2009)

Mass balance differential equations for each tissues/organ

Non-eliminating tissue:

Tissue-to-blood partition coefficient:

$$K_{tis} = \frac{C_{tis,ss}}{C_{blood,ss}}$$

Parameterization of PBPK models

Species specific

 blood flows, organ volumes

Drug specific

- intrinsic clearance (CLint)
- tissue-to-blood partition coefficients

Non-eliminating tissue:

inflowing blood conc.

out-flowing blood conc.

Tissue-to-blood partition coefficient:

$$K_{tis} = \frac{C_{tis,ss}}{C_{blood,ss}}$$

• Administration (dose, route, etc)

Parameterization of PBPK models

Species specific

- blood flows, organ volumes
- tissue composition data

Drug specific

- intrinsic clearance CLint
- blood:plasma ratio B:P
- fraction unbound fuP
- octanol-water coeff Pow
- pKa value
- Administration (dose, route, etc)

Non-eliminating tissue:

inflowing blood conc.

out-flowing blood conc.

Tissue-to-blood partition coefficient:

$$K_{tis} = \frac{C_{tis,ss}}{C_{blood,ss}}$$

Poulin/Theil (2000), Rodgers/Rowland (2005), Schmidt (2008)

8

Example: Lidocaine (60 min i.v. infusion in human) inhalation-(J/gm) lung conc. adipose 3 0 conc. (mg/L) 2 6 4 time (h) 8 bone (b) Adipose. brain artery vein 0^L heart 4 time (h) 6 2 8 (a) Venous blood kidney muscle 10 conc. (mg/L) skin 6 conc. (mg/L) liver 4 spleen intravenous dose 2 6 4 time (h) gut (d) Heart. С, 4 time (h) 2 6 8 oral | absorption degradation (h) Muscle.

 \rightarrow different concentrations and profiles in different tissues/organs

Observation

In classical PK analysis, almost exclusive 1,2,or 3 compartment models are sufficient to describe *in vivo* blood/plasma data.

1. What is the relation between detailed PBPK models and much simpler compartmental PK models?

- 2. Can we predict the classical PK model from a detailed PBPK model?
- 3. Are their general properties that hold for certain drug types?

Lumping of PBPK model and its link to classical compartment models

-jointly with Sabine Pilari-

lung

adipos bone

brain heart kidney

muscl skin

spleer

gut

oral absorption

liver

degradation

inhalation-

All 13 tissue/organ concentration time profiles

lung

adipos bone brain

heart

kidney muscl skin

spleer

gut

oral absorption

liver

inhalation-

Normalized tissue concentration time profiles

Lidocaine (60 min i.v. infusion in human)

Two step approach to lumping

- 1. Mechanistically lumped model
 - Aims to approximate all 13 tissues/organs with high accuracy
- 2. Minimal lumped model
 - Aims to approximate only the venous blood compartment

Idea: Simplify PBPK model based on kinetic homogeneity

• Lumping condition

$$\frac{C_1(t)}{\hat{K}_1} = \frac{C_2(t)}{\hat{K}_2} = \dots$$

• Define lumped concentration + parameters

$$C_L = \frac{1}{V_L} \left(V_1 C_1 + \ldots + V_m C_m \right)$$

$$V_L = V_1 + \ldots + V_m$$

Groups of similar profiles

- {muscle}
- {adipose, bone}
- {skin}
- {vein + rest}

Pilari/Huisinga (2010)

Idea: Simplify PBPK model based on kinetic homogeneity

• Lumping condition

$$\frac{C_1(t)}{\hat{K}_1} = \frac{C_2(t)}{\hat{K}_2} = \dots = \frac{C_L(t)}{K_L}$$

• Define lumped concentration + parameters

$$\begin{split} C_{L} &= \frac{1}{V_{L}} \left(V_{1} C_{1} + \ldots + V_{m} C_{m} \right) \\ V_{L} &= V_{1} + \ldots + V_{m} \\ Q_{L} &= Q_{1} + \ldots + Q_{m} \\ K_{L} &= \frac{1}{V_{L}} \left(V_{1} \hat{K}_{1} + \ldots + V_{m} \hat{K}_{m} \right) \end{split}$$

Lumped differential equations:

$$V_L \frac{d}{dt} C_L = Q_L \cdot \left(\frac{C_{cen}}{K_{cen}} - \frac{C_L}{K_L}\right)$$

$$V_{cen} \frac{d}{dt} C_{cen} = Q_{cen} \cdot \left(C_{in} - \frac{C_{cen}}{K_{cen}} \right)$$

 $-CL_{blood} \ \frac{C_{cen}}{K_{cen}}$

From lumped to original tissue concentration:

$$C_{tis} = \hat{K}_{tis} \cdot \frac{C_L}{K_L}$$

Comparison: 13 compartment PBPK vs. 4 compartment lumped model

Wilhelm Huisinga, PAGE 2010, Berlin

Comments on existing lumping approaches

- Nestorov/Aarons/Arundel/Rowland (1998)
 - First systematic lumping approach
 - Lumping based on tissue time constants (more restrictive)
 - No lumping of permeability rate limited compartments
 - Not possible to predict original tissue concentrations
- Brochot/Toth/Bois (2005)
 - Same underlying lumping approach
 - Constraint based lumping
- Gueorguieva/Nestorov/Rowland (2006)
 - Same underlying lumping approach
 - Global sensitivity analysis approach (FAST)
 - Considering variability and uncertainty

Mechanistically lumped PK models for 25 diverse drugs

	Drug	pK_a	$\log P_{\rm ow}$	fu ^p	B:P	CL _{blood} (ml/min/kg)
	Moderate-to-strong	bases				
	Amitriptyline	9.40^{1}	4.90^{1}	0.056^{-1}	0.86^{1}	12.00^{2}
	Caffeine	10.40^{1}	-0.09^{1}	0.700^{1}	1.04^{-1}	1.40^{3}
	Desipramine	10.32^{1}	4.90^{-1}	0.190^{1}	0.96^{1}	12.00^{2}
Moderate-to-	Diltiazem	7.70^{1}	2.67^{-1}	0.200^{1}	1.03^{1}	12.00^{2}
strong bases	Diphenhydramine	8.98^{1}	3.31 ¹	0.089^{1}	0.80^{1}	9.50^{2}
	Imipramine	9.50^{1}	4.80^{-1}	0.130^{1}	1.12^{1}	12.00^{2}
	Lidocaine	8.01^{1}	2.26^{-1}	0.296^{1}	0.84^{1}	15.00^{3}
	Metoprolol	9.70^{1}	2.15^{-1}	0.900^{1}	1.14^{1}	12.15^{3}
	Pindolol	8.80^{1}	1.75 1	0.410^{1}	0.81^{1}	4.20^{3}
	Sildefanil	7.60^{1}	2.75 ¹	0.040^{1}	0.62^{1}	6.00^{3}
	Theophylline	8.71^{1}	0.26^{-1}	0.600^{1}	0.83^{1}	0.65^{3}
wook basos	Weak bases					
	Alprazolam	2.40^{4}	2.09^{-4}	0.320^{2}	0.78^{2}	0.76 ²
	Diazepam	3.38^{4}	2.84^{-4}	0.013^{2}	0.71^{2}	0.60^{2}
weak bases	Flunitrazepam	1.80^{-4}	2.06^{4}	0.250 5	1.20^{5}	9.8 (ml/min) 5
	Midazolam	6.01 ⁴	3.15 4	0.050^{2}	0.53^{2}	8.70^{2}
	Triazolam	2.00^{4}	2.42 4	0.100^{2}	0.62^{2}	4.70^{2}
	Acids					
	Amobarbital	7.90^{-4}	1.89 ⁴	0.390^{2}	1.50^{2}	0.35^{2}
	Diclofenac	4.15 ⁶	3.90 ⁶	0.005^{2}	0.55^{2}	7.60^{2}
• •	Hexobarbital	8.29 ⁴	1.74 ⁴	0.530^{2}	1.00^{2}	3.60^{2}
acids	Ibuprofen	4.70^{-4}	4.06 4	0.010^{2}	0.55^{2}	1.50^{2}
	Methohexital	8.30 4	1.72^{-4}	0.270^{2}	0.70^{2}	16.00^{2}
	Thiopental	7.53^{4}	2.93 4	0.180^{-4}	0.88^{8}	2.029
	Tolbutamide	5.29 ⁴	2.39 ⁴	0.040^{2}	0.55^{2}	0.36^{2}
	Valproate	4.60^{-4}	2.76 ⁴	0.099 4	0.55^{10}	0.11^{10}
	Warfarin	5.08 ⁴	3.00 4	0.010^{2}	0.55^{2}	0.081^2

Mechanistically lumped PK models for 25 diverse drugs

 \rightarrow Only adi, mus, bon and ski lumped separately from central compartment \rightarrow Liver and kidney were always part of the central compartment

Two step approach to lumping

- 1. Mechanistically lumped model
 - Aims to approximate all 13 tissues/organs with high accuracy
- 2. Minimal lumped model
 - Aims to approximate only the venous blood compartment

Minimal lumped models and the link to classical compartment models

Minimal lumped models to predict venous blood concentration

• Example: Lidocaine

Mechanistically lumped model:

- {muscle}
- {adipose, bone}
- {skin}
- {vein + rest}

Minimal lumped model:

- {adipose, muscle, bone}
- {vein + rest}

Pilari/Huisinga (2010)

Minimal lumped model vs. empirical PK compartment model

• Empirical PK 2-compartment model:

minim	al	determination of empiric parame-			
model		ters based on:			
2- cmt	model				
			min. param.	emp. fitting	
Vcen	14.33	V_1	29.7	21.5	
$V_{\rm p}$	44.18	V_2	99.1	99.8	
Q	1.91	q	1.91	1.85	
K _{cen}	2.07	CL	1.10	1.09	
Kp	2.24				
$V_1 = V_{\rm cen} \cdot K_{\rm cen}$					

$$V_1 = V_{\text{cen}} \cdot K_{\text{cen}}$$
$$V_2 = V_{\text{p}} \cdot K_{\text{p}}$$
$$q = Q$$
$$\text{CL} = \text{CL}_{\text{blood}}$$

Minimal lumped models for 25 diverse drugs

→ almost always peripheral compartment = {adi,bon,mus}

Comparison to literature data

	Predicted minimal lumped model	Classical compartment model (literature)
Midazolam	3 compartments	2-3 compartments
Thiopental	3 compartments	2-3 compartments
Valproate	1 compartments	1 compartments
Tolbutamide	1 compartments	2 compartments
Lidocaine	2 compartments	2-3 compartments

Summary

• Mechanistic interpretation of classical compartment PK models

 \rightarrow Poster by Sabine Pilari

Outlook

•Lumping in a population context: Combine lumping of PBPK models with methods to generate physiological parameters for entire populations

- -Does the minimal lumped PK model differ for subpopulations?
- -Important physiological parameters of the PBPK will appear as covariates in minimal lumped model

Networking

Computational Physiology Group@Hamilton Institute (www.hamilton.ie/compphysiol): Ludivine Fronton, Stephan Menz, Sabine Pilari, Alexander Solms

- N. Beerenwinkel, Computational Biology @ D-BSSE/ETH Zürich
- C. Kloft, Clinical Pharmacy @ MLU Halle-Wittenberg

PharMetrX PhD Program *Pharmacometrics & Computational Disease Modelling* bridging pharmacy and mathematics. Joint program of MLU Halle-Wittenberg and FU Berlin, supported by Abbott, Bayer Schering Pharma, Bayer Technology Services, Boehringer Ingelheim, Merck, Sanofi-Aventis.

http://www.pharmacometrics.de