A physiologically-based population pharmacokinetic analysis to assess a lower efavirenz dose of 400 mg once daily in HIV-positive pregnant women

Stein Schalkwijk, Rob ter Heine, Angela Colbers, Alwin Huitema, Paolo Denti, Kelly E. Dooley, Edmund Capparelli, Brookie Best, Tim Cressey, Rick Greupink, Frans G.M. Russel, Mark Mirochnick, and David Burger
Efavirenz...

- Is a cornerstone for treatment of HIV in parts of the world where HIV is most prevalent.

- Is the WHO recommended 1st-line treatment option for HIV-infected individuals including pregnant women.

- Is administered as 600 mg once daily and available in several fixed-dose combinations.

- Reduce the risk of mother-to-child transmission from 15-40% to less than 1%.

Guidelines for antiretroviral therapy in low and middle-income countries. WHO. 2013
Dose reduction of efavirenz

• The ENCORE1 Study Group showed non-inferiority of 400 mg compared to 600 mg once daily in adults (phase III).

• Reduction of efavirenz-associated CNS side effects.

• Cost minimization
 I. A 33 percent dose reduction may translate into three-year cost savings of up to $336 M.
 II. More global access to HIV treatment.

• Ideally a ‘one dose fits all’ regimen.

• 400 mg in pregnancy not studied.
Physiological changes during pregnancy

- **Total body water**: ↑44%
- **Plasma volume**: ↑50%
- **Total body fat**: ↑35%
- **Albumin conc.**: ↓31%
- **GFR**: ↑37%
- **gastric pH**: ↑
- **gastric emptying and intestinal motility**: ↓
- **CYP2D6 activity**: ↑48%
- **CYP3A4 activity**: ↑38%
- **CYP2B6 activity**: ??

3rd trimester

Efavirenz PK-PD relation well-established

- Concentrations (~C12) above 4.0 mg/L are associated with CNS-side effects.
- Concentration (~C12) lower than 0.7-1.0 mg/L are associated with treatment failure.
- Small PK studies in pregnancy with 600 mg efavirenz once daily indicate lower exposure during pregnancy.

Knowledge gap

Based on these PK studies with 600 mg and knowledge of pregnancy-related physiology, a lower exposure during pregnancy can be expected.

It is unknown whether the 400mg dose is appropriate for pregnant women.

We aim:
1.) To develop a mechanistic population pharmacokinetic model to describe the pharmacokinetics of efavirenz in pregnant and non-pregnant women
2.) To simulate efavirenz exposure using 400mg once daily during pregnancy
Approach

- Review of literature
- Plan of analysis
- Gather and compile PK data on efavirenz
- Develop popPK model
- Investigate exposure with an EFV 400 mg dose
Methods: efavirenz protein binding

• >99% protein binding (mainly albumin)

• Relation between plasma albumin concentration and time of gestation described by Abduljalil et al. 2012

• Relation free fraction efavirenz and albumin concentration described by Avery et al. 2013

• Efavirenz dissociation constant (K_{diss}) = 2.05 µM

\[f_u = \frac{K_{diss}}{K_{diss} + [P]} \]
Methods: mechanistic input II

• Female total liver blood flow = 109 L/h

• Conflicting data provide no evidence for pregnancy-induced changes in total liver blood flow

\[Q_{\text{hep,plasma}} = (1 - H_t) \times Q_{\text{hep}} \]

• Relation between hematocrit and time of gestation described by Abduljalil et al. 2012

• To account for the relation between hepatic systemic and first-pass metabolism, a well-stirred liver model was implemented.

\[CL_{\text{hep}} = \frac{Q_{\text{hep,plasma}} \cdot CL_{\text{int,hep}} \cdot f_u}{Q_{\text{hep,plasma}} + CL_{\text{int,hep}} \cdot f_u} \]
Methods: general

• No evidence for *a priori* pregnancy-induced alterations in CYP2B6 expression

• Pregnancy-induced PK alterations were incorporated as time-dependent effects

• Allometric scaling of flow parameters (^0.75) and volumes (^1) to non-pregnant total body weight.

• Pregnancy was tested as covariate on all PK parameters. Effects retained when ΔOFV\geq3.84, clinically relevant (>10% change), and physiologically plausible.

• Patients using potentially interacting concomitant medicines (e.g. rifampicin or isoniazid) were excluded.

• NONMEM v7.3 & R

Methods: pharmacogenetics

We assumed three subpopulations (phenotypes) based on known CYP2B6 pharmacogenetics:
1. Poor metabolizers (PM)
2. Intermediate metabolizers (IM)
3. Extensive metabolizers (EM)

$\text{MIXTURE subroutine:}$
Subjects with missing genotype (84%) were assigned to the mixture (subpopulation) with the highest individual probability

Results: datasets

- Published and unpublished data from 9 studies were gathered and compiled.

- Largest EFV PK dataset in women to date.

<table>
<thead>
<tr>
<th>Study</th>
<th>HIV+♀</th>
<th>Population</th>
<th>Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129</td>
<td>International</td>
<td>Sparse</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>100% Asian</td>
<td>Intensive</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>100% Caucasian</td>
<td>Intensive</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>100% Black</td>
<td>Intensive</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>Mainly Caucasian</td>
<td>Sparse</td>
</tr>
<tr>
<td>6</td>
<td>25 (pregnant)</td>
<td>84% Thai</td>
<td>Intensive</td>
</tr>
<tr>
<td>7</td>
<td>8 (pregnant)</td>
<td>100% Black</td>
<td>Intensive</td>
</tr>
<tr>
<td>8</td>
<td>42 (pregnant)</td>
<td>100% Black</td>
<td>Sparse</td>
</tr>
<tr>
<td>9</td>
<td>11 (pregnant)</td>
<td>100% Black</td>
<td>Intensive</td>
</tr>
<tr>
<td>Total</td>
<td>249</td>
<td></td>
<td>1697</td>
</tr>
</tbody>
</table>

Demographics

- Median total non-pregnant BW (range): 59 (37-125) kg
- Median number of occasions (range): 2 (1-7)
- Pregnant women: 86/249 (35%)
- Median gestational age (range): 35 (25-39) weeks
- Phenotype available: 41 (16%)
 - SM: 8
 - IM: 22
 - EM: 11

Results: pharmacogenetics

• Stochastic simulation and estimation showed that the phenotypic population frequencies could not be identified.

• Population frequencies were fixed based data from our population combined with known prevalence of the CYP2B6 genotypes.

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Population frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow</td>
<td>12</td>
</tr>
<tr>
<td>Intermediate</td>
<td>36</td>
</tr>
<tr>
<td>Extensive</td>
<td>52</td>
</tr>
</tbody>
</table>

Results: final PK model

K12 = K23 = K34 = K45 = K_{transit}
K50 = Q_{Hep} \times EH / V_{Hep}
K56 = Q_{Hep} \times (1-EH) / V_{Hep}
K65 = Q_{Hep} / V_{d,central}
K67 = Q / V_{d,central}
K76 = Q / V_{d,peri}
E_{Hep} = (CL_{INT} \times F_U) / (Q_{Hep} + (CL_{INT} \times F_U))

Parameter	Estimate	RSE
K_{transit} (h^{-1}) | 1.65 | 8.4% |
CL_{INT} SM (L/h) | 1320 | 7.5% |
CL_{INT} IM (L/h) | 3070 | 7.8% |
CL_{INT} EM (L/h) | 4410 | 6% |
V_d central (L) | 117 | 7.9% |
V_d peripheral (L) | 393 | 5.6% |
Q (L/h) | 34.9 | 7.5% |
IIV CL_{INT} (%) | 31.9 | 18.4% |
IIV K_{tr} (%) | 52.6 | 19.5% |
IOV F (%) | 27.4 | 6.3% |
Prop error (%) | 17.5 | 2.1% |

Pregnancy not identified as covariate
Results: visual predictive check

Non-Pregnant

Pregnant
Results: simulated total plasma C12

EFV C12 after 600 mg once daily in pregnant and non-pregnant women by phenotype

EFV C12 after 400 mg once daily in pregnant and non-pregnant women by phenotype

Simulated 500x/condition
Total plasma concentration versus the unbound plasma concentration

Distribution

Effects

Elimination

Measured total concentration

F

Bmax

Kd

Alb.
The lower threshold for antiviral effect of 1.0 mg/L was corrected for the fraction unbound predicted in non-pregnant women.
Conclusions

• Pregnancy decreases total efavirenz concentrations, however:
 • No effect of pregnancy on other PK parameters → unbound concentration unchanged

• Although this finding warrants *in vivo* confirmation, it indicates that a dose reduction to 400mg may be feasible in pregnancy.

• This would help to make substantial cost-savings that are especially important in countries that need more access to HIV-treatment.
Discussion

• Largest dataset of efavirenz PK data from pregnant and non-pregnant HIV-infected women.

• The mechanistic approach based on physiological data enabled us to account for pregnancy-induced alterations in pharmacokinetics a priori.

• No data on actual free concentrations, albumin concentrations or variability in unbound fraction were available and therefore assumptions on protein binding had to be made.

• Simulation results therefore did not account for variability in protein binding.

• This approach allows for extrapolation based on mechanism and physiology.

• The findings from this analysis may have been missed with standard empirical modeling.
Acknowledgements

Radboud Institute for Health Sciences:
Rob ter Heine, PhD
Angela Colbers, PhD
Rob Aarnoutse, PhD
Prof. David Burger, PhD

Radboud Institute for Molecular Life Sciences:
Prof. Frans Russel, PhD
Rick Greupink, PhD

IMPAACT network:
Prof. Edmund Capparelli, PhD
Prof. Brookie Best, PhD
Prof. Mark Mirochnik, PhD

The Netherlands Cancer Institute:
Alwin Huitema, PhD

University of Cape Town:
Paolo Denti, PhD

John Hopkins University:
Kelly Dooley, PhD

The HIV-NAT research network:
Stephen Kerr, PhD

Harvard School of Public Health:
Tim Cressey, PhD

Contact:
Stein Schalkwijk
Stein.j.schalkwijk@radboudumc.nl