
Antonio Gonçalves1, France Mentré1, Annabelle Lemenuel-Diot2 & Jérémie Guedj1

1IAME, UMR 1137, INSERM, Paris Diderot University, Paris, France
2Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel

Model averaging in viral 
dynamics

Page Meeting, Stuart Beal Methodology Session
June 13th 2019



Viral dynamics

 Viral dynamics is the mathematical study of virus infection and dynamics within individuals

 Viral dynamic models aim to explain pathogenesis and biological processes in a viral infection
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Viral dynamics

 Viral dynamics is the mathematical study of virus infection and dynamics within individuals

 Viral dynamic models aim to explain pathogenesis and biological processes in a viral infection

 Target cell model[1,2,3]:
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[1] Nowak et al. Proc Natl Acad Sci 1996

[2] Ho et al. Nature 1995

[3] Stafford et al. J Ther Biol 2000
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 Viral dynamics is the mathematical study of virus infection and dynamics within individuals

 Viral dynamic models aim to explain pathogenesis and biological processes in a viral infection
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[1] [2,3]

[1] Nowak et al. Proc Natl Acad Sci 1996

[2] Ho et al. Nature 1995

[3] Stafford et al. J Ther Biol 2000
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Challenges in viral dynamics
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 Some parameters of complex viral dynamics models can hardly be estimated

• Parameters related to unobserved compartments

• Poorly identifiable parameters are often fixed to arbitrary values[1,2]

• Sensitivity analyses are carried out[2,3]

[1] Guedj et al Bull Math Biol 2007

[2] Handel et al J R Soc Interface 2010

[3] Best et al Proc Natl Acad Sci 2017
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 Some parameters of complex viral dynamics models can hardly be estimated

• Parameters related to unobserved compartments

• Poorly identifiable parameters are often fixed to arbitrary values[1,2]

• Sensitivity analyses are carried out[2,3]

 Various complex models can also be used to compare different biological assumptions[4,5,6]

• Ex: Influenza A

[1] Guedj et al Bull Math Biol 2007

[2] Handel et al J R Soc Interface 2010

[3] Best et al Proc Natl Acad Sci 2017

[4] Moore et al Bull Math Biol 2018

[5] Li and Handel J Theor Biol. 2014

[6] Baccam et al J Virol. 2006



Model selection

 Model selection (MS):

• Most commonly used approach

• Model that « best » descibes the data, based on an information criteria (e.g. AIC)

• Selected model is carried forward in prediction step

o Ignores model uncertainty[1]

o Impairs predictive performances[2,3]

[1] Buckland et al. Biometrics 1997

[2] Ganusov Front Microbiol 2016

[3] Evans et al. Trends Ecol Evol 2013
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Model averaging

 Model averaging (MA):

• Allows measuring model uncertainty by weighting a set of M candidate models in function of an 

information criteria[1] (e.g. AIC)

• Applications to NL[2,3] and NLME models[4,5,6]

o Concentration-effect relationship

o Dose finding studies
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𝑤𝑚 =
𝑒
−𝐴𝐼𝐶𝑚

2

σ𝑚=1
𝑀 𝑒

−𝐴𝐼𝐶𝑚
2

[4] Dosne et al. Stat Med 2016

[5] Buatois et al. AAPS 2018

[6] Aoki et al. JPKPD 2017

[1] Buckland et al. Biometrics 1997

[2] Ganusov Front Microbiol 2016

[3] Evans et al. Trends Ecol Evol 2013



Objectives

 To develop model averaging as an alternative to model selection in viral dynamic

models

 To compare parameter estimates and predictive performances of model 

averaging and model selection in the context of:

1) Poorly identifiable parameters

2) Multiple biological models

6



Setting 1: viral dynamic models in presence of poorly identifiable 

parameters

7

M
e
th

o
d

s

 Target cell limited model[1,2,3]:

𝑅0 =
𝛽𝜋𝑇0

𝑐𝛿

 Estimation of R0, δ, V0, 

k and π 

Parameter (units) Estimate 
Expected 

RSE% 

R0 12 516% 

δ (d-1) 1 10.8% 

c (d-1) 20 (fixed) - 

T0 (cells.mL-1) 108 (fixed) - 

V0 (copies.mL-1) 10-4 743% 

k (d-1) 4 971% 

π (copie.cell-1.d-1) 6000 604% 

ω R0 0.3 28.6% 

ω δ 0.3 41% 

ω π 0.3 460% 

𝝈 0.7 7% 

 1 

[1] Smith et al PLoS Pathog 2013

[2] Handel et al J R Soc Interface 2010

[3] Best et al Proc Natl Acad Sci 2017

[4] Dumont et al. Comput Methods Programs Biomed 2018
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 Expected RSE% using PFIM[4]:

• N = 30

• Design = 3, 6, 9, 12, 15 and 18 days
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 Target cell limited model[1,2,3]:

𝑅0 =
𝛽𝜋𝑇0

𝑐𝛿

 Estimation of R0, δ, V0, 

k and π 

Estimation restricted to 

R0, δ and k 

Parameter (units) Estimate 
Expected 

RSE% 
Estimate 

Expected 

RSE% 

R0 12 516% 12 7.0% 

δ (d-1) 1 10.8% 1 6.3% 

c (d-1) 20 (fixed) - 20 (fixed) - 

T0 (cells.mL-1) 108 (fixed) - 108 (fixed) - 

V0 (copies.mL-1) 10-4 743% 10-4 (fixed) - 

k (d-1) 4 971% 4 (fixed) - 

π (copie.cell-1.d-1) 6000 604% 6000 24.1% 

ω R0 0.3 28.6% 0.3 28.6% 

ω δ 0.3 41% 0.3 41% 

ω π 0.3 460% 0.3 460% 

𝝈 0.7 7% 0.7 7% 

 1 

[1] Smith et al PLoS Pathog 2013

[2] Handel et al J R Soc Interface 2010

[3] Best et al Proc Natl Acad Sci 2017
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Setting 1: viral dynamic models in presence of poorly identifiable 

parameters
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 We defined M=9 candidate models resulting from the combination of 3 values for V0 and k[1]:

• V0 = 10-5; 10-4 or 10-3 copies.mL-1

• k = 1; 4 or 20 d-1

Parameters 𝛹𝑚
∗ μ Ω

𝑅0 12 0.3

𝛿 (𝑑−1) 1 0.3

𝜋 (𝑐𝑜𝑝𝑖𝑒𝑠. 𝑐𝑒𝑙𝑙−1.𝑚𝐿−1) 6000 0.3

𝑐 (𝑑−1) fixed 20 -

𝑉0 (𝑐𝑜𝑝𝑖𝑒𝑠.𝑚𝐿
−1) fixed 10-5; 10-4 or 10-3 -

𝑘 (𝑑−1) fixed 1, 4 or 20 -

𝜎 0.7

[1] Best et al Proc Natl Acad Sci 2017



Setting 2: viral dynamic models including the immune response 
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 4 models additionnal models to account for immunity roles during infection can by derived

from a target cell model[1,2,3,4]
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model (TCL)
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[1] Madelain et al. Nat Commun 2018

[2] Baccam et al. J Virol 2006

[3] Pawelek et al PLoS Comp Biol 2012

[4] Li and Handel  J Theor Biol. 2014
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 4 models additionnal models to account for immunity roles during infection can by derived

from a target cell model[1,2,3,4]

Target cell limited
model (TCL)

Refractory model 
(R)

Production 
inhibition model 

(PI)

Virus-killing model 
(V)

Cytotoxic model 
(C)

[1] Madelain et al. Nat Commun 2018

[2] Baccam et al. J Virol 2006

[3] Pawelek et al PLoS Comp Biol 2012
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 We defined M=5 candidate models[1,2,3,4]

• Parameters chosen to provide a 20% reduction of 

the log AUC020 in presence of immune response

Setting 2: viral dynamic models including the immune response 
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Parameters𝜳𝒎
∗ TCL R PI C V ω

𝝅 (𝐜𝐨𝐩𝐢𝐞𝐬. 𝒄𝒆𝒍𝒍−𝟏. 𝒎𝑳−𝟏) 250 6000 6000 6000 6000 0.3

θ 0 2200 32.5.104 3 0.001 -

𝝓 0 1 0.99 0.9 36.5 0.3

𝑅0 12 0.3

𝛿 (𝑑−1) 1 0.3

𝑐(𝑑−1) fixed 20 -

𝑉0(𝑐𝑜𝑝𝑖𝑒𝑠.𝑚𝐿
−1) fixed 10-4 -

𝑘(𝑑−1) fixed 4 -

[1] Madelain et al. Nat Commun 2018

[2] Baccam et al. J Virol 2006

[3] Pawelek et al PLoS Comp Biol 2012

[4] Li and Handel J Theor Biol 2014



Simulations & estimation
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True Model (TM):
True parameters 𝛹𝑚

∗

Design:
• 30 subjects
• t = 3, 6, 9, 12, 15, 18 days

s=1;…;100 
Simulated datasets

Simulation step

Candidate model 
m=1

Candidate model 
m=2

Candidate model 
m=M

. .
 .

Estimation step

Simulation scenario:

Estimation:

 Estimation of ෡Ψ𝑚
𝑠 by maximizing the likelihood function

• SAEM algorithm using importance sampling

 Asymptotic approximation of𝑝 ෡Ψ𝑚
𝑠 supposed Gaussian with standard errors

given by 𝐹𝐼𝑀−1

 MONOLIX version 2018 release 2
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AIC1 = -234.67

AIC2 = -235.48
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∗

Design:
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s=1;…;100 
Simulated datasets

Simulation step

Candidate model 
m=1

Candidate model 
m=2

Candidate model 
m=M

. .
 .

Estimation step

Simulation scenario:

MA

w1 = 0.3

w2 = 0.2

wM = 0.5

Estimation:

 Estimation of ෡Ψ𝑚
𝑠 by maximizing the likelihood function

• SAEM algorithm using importance sampling

 Asymptotic approximation of𝑝 ෡Ψ𝑚
𝑠 supposed Gaussian with standard errors

given by 𝐹𝐼𝑀−1

 MONOLIX version 2018 release 2
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Performances of MS and MA for parameter estimation

For each setting, scenario and approach:

 Percentage of selected models

 Distribution of weights

 Coverage rates (CR) of parameters R0 and δ
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Setting 1: viral dynamic models in presence of poorly identifiable parameters

Percentage of selected models
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Setting 1: viral dynamic models in presence of poorly identifiable parameters

Coverage rates
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Setting 2: viral dynamic models including the immune response
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Setting 2: viral dynamic models including the immune response 
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 Capability of MS and MA to anticipate the effect of a treatment and RMSE for MS, MA and TM

Predictive performances of MS and MA
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 Capability of MS and MA to anticipate the effect of a treatment

 Treatment initiated at day 6 and up to day 20Bias and RMSE for MS, MA and TM
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17

M
e
th

o
d

s

b

T

I1

d

V

c

π

I2

k

(1-ε)

Treatment
initiation



 Capability of MS and MA to anticipate the effect of a treatment

 Treatment initiated at day 6 and up to day 20Bias and RMSE for MS, MA and TM
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 Prediction of the percentage of patients with undetectable viral load (i.e. below 10 copies.mL-1) at EoT

 3 levels of efficacy: 90,95 or 99% initiated at day 6 and up to day 20

Computation of Bias and RMSE for MS, MA and TM

Predictive performances of MS and MA
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Predicted percentage of undetectable viral loads
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Conclusion

 MS in viral dynamics can lead to poor coverage rates for parameter estimates

 MA can improve coverages by taking into account both parameter and model uncertainty

 MS has provided good predictions in our scenarios

 MA is easy to implement and should be used to refine parameter estimates and predictions

21
[1] Ueckert et al. 2015

[2] Dosne et al. J Pharmacokinet Pharmacodyn 2016

 Explore settings where the true model is not part of the candidate models

 Find an alternative to asymptotic approximation for parameter uncertainties

• Implement other methods to compute the FIM such as HMC[1] or SIR[2]

Perspectives
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