

Model averaging in viral dynamics

Antonio Gonçalves¹, France Mentré¹, Annabelle Lemenuel-Diot² & Jérémie Guedj¹

¹IAME, UMR 1137, INSERM, Paris Diderot University, Paris, France ²Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel

Page Meeting, Stuart Beal Methodology Session
June 13th 2019

Viral dynamics

- Viral dynamics is the mathematical study of virus infection and dynamics within individuals
- Viral dynamic models aim to explain pathogenesis and biological processes in a viral infection

Viral dynamics

- Viral dynamics is the mathematical study of virus infection and dynamics within individuals
- Viral dynamic models aim to explain pathogenesis and biological processes in a viral infection
- Target cell model^[1,2,3]:

$$\frac{dT}{dt} = -\beta TV$$

$$\frac{dI_1}{dt} = \beta TV - kI_1$$

$$\frac{dI_2}{dt} = kI_1 - \delta I_2$$

$$\frac{dV}{dt} = \pi I_2 - cV$$

^[2] Ho et al. *Nature* 1995

Viral dynamics

- Viral dynamics is the mathematical study of virus infection and dynamics within individuals
- Viral dynamic models aim to explain pathogenesis and biological processes in a viral infection
- Target cell model^[1,2,3]:

$$\frac{dT}{dt} = -\beta TV$$

$$\frac{dI_1}{dt} = \beta TV - kI_1$$

$$\frac{dI_2}{dt} = kI_1 - \delta I_2$$

$$\frac{dV}{dt} = \pi I_2 - cV$$

Table 1. HBV versus HIV dynami	cs	
	HBV ^[1]	HIV ^{[2,}
Plasma virus		
Half-life	24 hr	6 hr
Daily turn-over	50%	90%
Total production (periphery)	10^{11}	10 ⁹
Load	2×10^{11}	10 ⁹
Infected cell		
Half-life	10-100 days	2 days
Daily-turnover	1-7%	30%

^[1] Nowak et al. *Proc Natl Acad Sci* 1996

^[2] Ho et al. Nature 1995

Challenges in viral dynamics

- Some parameters of complex viral dynamics models can hardly be estimated
 - Parameters related to unobserved compartments
 - Poorly identifiable parameters are often fixed to arbitrary values^[1,2]
 - Sensitivity analyses are carried out^[2,3]

Challenges in viral dynamics

- Some parameters of complex viral dynamics models can hardly be estimated
 - Parameters related to unobserved compartments
 - Poorly identifiable parameters are often fixed to arbitrary values^[1,2]
 - Sensitivity analyses are carried out^[2,3]
- Various complex models can also be used to compare different biological assumptions^[4,5,6]
 - Ex: Influenza A

^[1] Guedj et al Bull Math Biol 2007

^[2] Handel et al J R Soc Interface 2010

Model selection

- Model selection (MS):
 - Most commonly used approach
 - Model that « best » descibes the data, based on an information criteria (e.g. AIC)
 - Selected model is carried forward in prediction step
 - Ignores model uncertainty^[1]
 - Impairs predictive performances^[2,3]

Model averaging

- Model averaging (MA):
 - Allows measuring model uncertainty by weighting a set of M candidate models in function of an information criteria^[1] (e.g. AIC)

$$w_m = \frac{e^{\frac{-AIC_m}{2}}}{\sum_{m=1}^{M} e^{\frac{-AIC_m}{2}}}$$

- Applications to NL^[2,3] and NLME models^[4,5,6]
 - Concentration-effect relationship
 - Dose finding studies

Objectives

 To develop model averaging as an alternative to model selection in viral dynamic models

- To compare parameter estimates and predictive performances of model averaging and model selection in the context of:
 - 1) Poorly identifiable parameters
 - 2) Multiple biological models

Target cell limited model^[1,2,3]:

- [1] Smith et al PLoS Pathog 2013
- [2] Handel et al J R Soc Interface 2010
- [3] Best et al Proc Natl Acad Sci 2017
- [4] Dumont et al. Comput Methods Programs Biomed 2018

- Expected RSE% using PFIM^[4]:
 - N = 30
 - Design = 3, 6, 9, 12, 15 and 18 days

	Estimation of R_0 , δ , V_0 , k and π		
Parameter (units)	Estimate	Expected RSE%	
R_0	12	516%	
δ (d ⁻¹)	1	10.8%	
c (d ⁻¹)	20 (fixed)	-	
T_0 (cells.mL ⁻¹)	10 ⁸ (fixed)	-	
V_0 (copies.mL ⁻¹)	10-4	743%	
k (d ⁻¹)	4	971%	
π (copie.cell ⁻¹ .d ⁻¹)	6000	604%	
ωR_0	0.3	28.6%	
ωδ	0.3	41%	
ω π	0.3	460%	
σ	0.7	7%	

Target cell limited model^[1,2,3]:

- [1] Smith et al PLoS Pathog 2013
- [2] Handel et al J R Soc Interface 2010
- [3] Best et al *Proc Natl Acad Sci* 2017
- [4] Dumont et al. Comput Methods Programs Biomed 2018

- Expected RSE% using PFIM^[4]:
 - N = 30
 - Design = 3, 6, 9, 12, 15 and 18 days

		Estimation of R_0 , δ , V_0 , k and π		restricted to and k
Parameter (units)	Estimate	Expected RSE%	Estimate	Expected RSE%
R_0	12	516%	12	7.0%
δ (d ⁻¹)	1	10.8%	1	6.3%
c (d ⁻¹)	20 (fixed)	-	20 (fixed)	-
$T_0 (cells.mL^{\text{-}1})$	10^8 (fixed)	-	10^8 (fixed)	-
$V_0 (copies.mL^{\text{-}1})$	10-4	743%	10 ⁻⁴ (fixed)	-
k (d ⁻¹)	4	971%	4 (fixed)	-
π (copie.cell ⁻¹ .d ⁻¹)	6000	604%	6000	24.1%
ωR_0	0.3	28.6%	0.3	28.6%
ωδ	0.3	41%	0.3	41%
ω π	0.3	460%	0.3	460%
σ	0.7	7%	0.7	7%

- We defined M=9 candidate models resulting from the combination of 3 values for V_0 and $k^{[1]}$:
 - $V_0 = 10^{-5}$; 10^{-4} or 10^{-3} copies.mL⁻¹
 - k = 1; 4 or 20 d^{-1}

Target cell limited model

k =	4	&	$V_0 =$	10~
1.				40-3

$$k = 1 & V_0 = 10^{-3}$$

$$-$$
 k = 1 & V₀ = 10⁻⁴

$$-$$
 k = 1 & V₀ = 10⁻⁵

Parameters $arPsi_m^*$	μ	Ω
R_0	12	0.3
$\delta \ (d^{-1})$	1	0.3
π (copies. cell $^{-1}$. mL^{-1})	6000	0.3
$c (d^{-1})$ fixed	20	-
V_0 (copies. mL^{-1}) fixed	10 ⁻⁵ ; 10 ⁻⁴ or 10 ⁻³	-
$k (d^{-1})$ fixed	1, 4 or 20	-
σ	0.7	

4 models additionnal models to account for immunity roles during infection can by derived from a target cell model^[1,2,3,4]

Target cell limited model (TCL)

$$\frac{dT}{dt} = -\beta TV$$

$$\frac{dI_1}{dt} = \beta TV - kI_1$$

$$\frac{dI_2}{dt} = kI_1 - \delta I_2$$

$$\frac{dV}{dt} = \pi I_2 - cV$$

^[1] Madelain et al. Nat Commun 2018

^[2] Baccam et al. J Virol 2006

^[3] Pawelek et al PLoS Comp Biol 2012

Target cell limited model (TCL)

4 models additionnal models to account for immunity roles during infection can by derived

from a target cell model^[1,2,3,4]

Refractory model (R)

 $\frac{dT}{dt} = -\beta TV - \frac{\phi TF}{F + \theta}$ $\frac{dI_1}{dt} = \beta TV - kI_1$ $\frac{dI_2}{dt} = kI_1 - \delta I_2$ $\frac{dV}{dt} = \pi I_2 - cV$ $\frac{dF}{dt} = qI_2 - d_F F$

[4] Li and Handel J Theor Biol. 2014

^[1] Madelain et al. Nat Commun 2018

^[2] Baccam et al. J Virol 2006

^[3] Pawelek et al PLoS Comp Biol 2012

4 models additionnal models to account for immunity roles during infection can by derived

From a target cell model^[1,2,3,4]

Refractory model (R)

Production inhibition model (PI)

 $\frac{dT}{dt} = -\beta TV$ $\frac{dI_1}{dt} = \beta TV - kI_1$ $\frac{dI_2}{dt} = kI_1 - \delta I_2$ $\frac{dV}{dt} = \pi \left(1 - \frac{\phi F}{F + \theta}\right) I_2 - cV$ $\frac{dF}{dt} = qI_2 - d_F F$

[4] Li and Handel J Theor Biol. 2014

^[1] Madelain et al. Nat Commun 2018

^[2] Baccam et al. J Virol 2006

^[3] Pawelek et al *PLoS Comp Biol* 2012

4 models additionnal models to account for immunity roles during infection can by derived

 $\frac{dT}{dt} = -\beta TV$ $\frac{dI_1}{dt} = \beta TV - kI_1$ $\frac{dI_2}{dt} = kI_1 - \delta I_2 - \frac{\phi I_2 F}{F + \theta}$ $\frac{dV}{dt} = \pi I_2 - cV$ $\frac{dF}{dt} = qI_2 - d_F F$

- [2] Baccam et al. J Virol 2006
- [3] Pawelek et al PLoS Comp Biol 2012
- [4] Li and Handel J Theor Biol. 2014

4 models additionnal models to account for immunity roles during infection can by derived

^[3] Pawelek et al PLoS Comp Biol 2012

^[4] Li and Handel J Theor Biol. 2014

- We defined M=5 candidate models^[1,2,3,4]
 - Parameters chosen to provide a 20% reduction of the log $AUC_{0\rightarrow 20}$ in presence of immune response

Parameters $oldsymbol{\Psi}_m^*$	TCL	R	PI	С	V	ω
π (copies. $cell^{-1}$. mL^{-1})	250	6000	6000	6000	6000	0.3
θ	0	2200	32.5.10 ⁴	3	0.001	-
φ	0	1	0.99	0.9	36.5	0.3
R_0		12				0.3
$\delta (d^{-1})$		1			0.3	
$c(d^{-1})$ fixed	20				-	
$V_0(copies. mL^{-1})$ fixed	10 ⁻⁴			-		
$k(d^{-1})$ fixed	4				-	

^[3] Pawelek et al *PLoS Comp Biol* 2012[4] Li and Handel *J Theor Biol* 2014

Simulations & estimation

Simulation scenario:

- Estimation of $\widehat{\Psi}_m^s$ by maximizing the likelihood function
 - SAEM algorithm using importance sampling
- Asymptotic approximation of $p(\widehat{\Psi}_m^s)$ supposed Gaussian with standard errors given by FIM^{-1}
- MONOLIX version 2018 release 2

Simulations & estimation

<u>Simulation scenario:</u>

- Estimation of $\widehat{\Psi}_m^s$ by maximizing the likelihood function
 - SAEM algorithm using importance sampling
- Asymptotic approximation of $p(\widehat{\Psi}_m^s)$ supposed Gaussian with standard errors given by FIM^{-1}
- MONOLIX version 2018 release 2

Simulations & estimation

Simulation scenario:

- Estimation of $\widehat{\Psi}_m^s$ by maximizing the likelihood function
 - SAEM algorithm using importance sampling
- Asymptotic approximation of $p(\widehat{\Psi}_m^s)$ supposed Gaussian with standard errors given by FIM^{-1}
- MONOLIX version 2018 release 2

Performances of MS and MA for parameter estimation

For each setting, scenario and approach:

- Percentage of selected models
- Distribution of weights
- Coverage rates (CR) of parameters R_0 and δ

$$CR = \frac{1}{S} \sum_{s=1}^{S} \mathbb{1}_{\Psi_{m}^{*} \in CI_{95\%} (\widehat{\Psi}_{m}^{s})}$$

Percentage of selected models

Simulation scenario

41%

Percentage of selected models

Simulation scenario

0.25

Setting 1: viral dynamic models in presence of poorly identifiable parameters

Simulation scenario Percentage of selected models & distribution of weights $k = 1 \& V_0 = 10^{-3}$ 1.00 1.00-1.00 0.75 -0.75 0.75 62% 54% 48% Model used for 0.50 0.50 -0.50 estimation 0.25 0.25 0.25 $k = 4 \& V_0 = 10^{-5}$ $k = 4 \& V_0 = 10^{-3}$ k 4 1.00 1.00 -1.00 -0.75 0.75 0.75 20-41% 37% 40% 0.50 0.50 0.50 10^{-4} 0.25 0.25 0.25 $k = 20 & V_0 = 10^{-5}$ $k = 20 \& V_0 = 10^{-3}$ Selected model ≠ simulation 1.00 1.00 1.00 model 0.75 0.75 0.75 41% 46% 0.50 0.50 0.50

0.25

0.25

Method

Method

Method

Percentage of selected models

Simulation scenario

Production inhibition

model

model

Percentage of selected models & distribution of weights

Simulation scenario

Coverage rates

Simulation scenario

Method

Coverage rates

Coverage rates

Simulation scenario

Capability of MS and MA to anticipate the effect of a treatment

- Capability of MS and MA to anticipate the effect of a treatment
- Treatment initiated at day 6 and up to day 20

 $P_m^s = Pr(V_m^s(t=20) < LLOQ)$

Treatment initiated at day 6 and up to day 20

- Prediction of the percentage of patients with undetectable viral load (i.e. below 10 copies.mL⁻¹) at EoT
- 3 levels of efficacy: 90,95 or 99% initiated at day 6 and up to day 20

- Prediction of the percentage of patients with undetectable viral load (i.e. below 10 copies.mL⁻¹) at EoT
- 3 levels of efficacy: 90,95 or 99% initiated at day 6 and up to day 20

- Prediction of the percentage of patients with undetectable viral load (i.e. below 10 copies.mL⁻¹) at EoT
- 3 levels of efficacy: 90,95 or 99% initiated at day 6 and up to day 20

Predicted percentage of undetectable viral loads

Predicted percentage of undetectable viral loads

Conclusion

- MS in viral dynamics can lead to poor coverage rates for parameter estimates
- MA can improve coverages by taking into account both parameter and model uncertainty
- MS has provided good predictions in our scenarios
 - → MA is easy to implement and should be used to refine parameter estimates and predictions

Perspectives

- Explore settings where the true model is not part of the candidate models
- Find an alternative to asymptotic approximation for parameter uncertainties
 - Implement other methods to compute the FIM such as HMC^[1] or SIR^[2]

Announcement

Organizers: - Jérémie Guedj, INSERM, jeremie.guedj@inserm.fr

- **Mélanie Prague**, INRIA Bordeaux, <u>melanie.prague@inria.fr</u>

See info: https://viraldynamics.sciencesconf.org/

Acknowledgements

To the co-authors
 Annabelle LEMENUEL-DIOT
 France MENTRE
 Jérémie GUEDJ

To my Inserm colleagues

To Roche

