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O B J E C T I V E S  

M E T H O D S  

R E S U L T S  

C O N C L U S I O N  

We propose a strategy to answer each question using the case example of a subcutaneously administered antibody. Figure 1 presents the datasets and models built without Priors. 
Population pharmacokinetic analysis was run with NONMEM® version 7.4.1. Covariate inclusion was performed with the Stepwise Covariate Modeling (SCM) tool implemented in 
Perl Speaks NONMEM (PSN)® version 4.7.0 [3] (forward inclusion: α = 0.05, backward deletion: α = 0.001).  

The PRIOR subroutine in NONMEM enables the estimation of parameters and their 
relative standard error (RSE) on sparse data by stabilizing the parameters towards prior 
estimates with a penalty function on the objective function [1,2]. However, the use of an 
initial (prior) model that includes covariate(s) as well as the identification of new 
 

1.  Assessment of the significance of the covariate included in model A. A drop of 2.8 
points in objective function was found between Model B and Model B1, meaning that the 
covariate of Model A was not significant on dataset B. 

Models OFV THETA (RSE %) OMEGA (RSE %) SIGMA 
(RSE %) CLpop KApop Vpop CLAGE1 CLAGE2 CLGFR CLWT VWT CL KA V V-CL 

Model A  
THETA(CL)= CLpop*(AGE/36)**CLAGE 

-62.48a

  
0.0233 
(4.41%) 

0.0263 
(10.48%) 

11.3 
(3.77%) 

0.279 
(27.31%) 

NA NA NA NA 0.0989 
(20.14) 

0.424 
(22.70%) 

0.0683 
(21.75%) 

0.0591 
(25.18) 

0.0389 
(6.16%) 

Model A1 = Model A2 -50.37a 0.0237 
(4.63%) 

0.0278 
(9.79%) 

11.3 
(3.81%) 

NA NA NA NA NA 0.111 
(20.08%) 

0.360 
(22.96%) 

0.0694 
(21.63%) 

0.0596 
(26.08%) 

0.0395 
(6.14%) 

Model B  
THETA(CL) = CLpop*(AGE/36)**CLAGE 

3633.00a 

4930.35b 

0.0248 
(3.12%) 

0.0240 
(11.78%) 

11.8 
(2.15%) 

0.195 
(22.58%) 

0.120 
(10.18%) 

0.469 
(24.16%) 

0.0962 
(12.20%) 

0.0877 
(12.58%) 

0.0571 
(3.99%) 

Model B1 3635.81a 

4939.92b 

0.0271 
(2.20%) 

0.0270 
(10.41%) 

11.7 
(2.17%) 

NA NA NA NA NA 0.122 
(10.10%) 

0.366 
(23.12%) 

0.0989 
(12.04%) 

0.0897 
(12.42%) 

0.0575 
(3.95%) 

Model B2 4895.36a 

4885.11b 

0.0287 
(2.76%) 

0.0265 
(11.04%) 

12.1 
(2.81%) 

NA NA NA NA NA 0.123 
(11.47%) 

0.361 
(22.73%) 

0.106 
(14.12%) 

0.0975 
(13.94%) 

0.0706 
(5.20%) 

Model B2’  
THETA(CL)=CLpop*(1 + CLGFR*(GFR - 82.44)) 
 *(1 + CLWT*(WT - 77)) 
THETA(V)=Vpop  *(1 + VWT*(WT - 77)) 

4861.48a 

4851.23b 

0.0285 
(2.62%) 

0.0264 
(11.06%) 

11.92 
(2.61%) 

NA NA 0.00245 
(25.96%) 

0.00592 
(25.87%) 

0.00717 
(21.67%) 

0.106 
(11.82%) 

0.361 
(22.77%) 

0.0823 
(15.26%) 

0.0785 
(14.92%) 

0.0712 
(5.20%) 

Model AB (reference) 
THETA(CL)=CLpop *(1 + CLAGE*(AGE – 66)) 
 *(1 + CLGFR*(GFR - 84.34)) 
 *exp(CLWT*(WT-77)) 
THETA(V)=Vpop *(1 + VWT*(WT - 77)) 

4837.99a 0.0295 
(2.65%) 
 
 

0.0260 
(10.73%) 

11.7 
(2.13%) 

0.00703 
(11.64%) 

-0.00886 
(30.53%) 

0.00252 
(23.83%) 

0.00583 
(23.08%) 

0.00710 
(18.61%) 

0.104 
(10.17%) 

0.369 
(26.21%) 

0.0774 
(12.66%) 

0.0736 
(12.76%) 

0.0582 
(3.99%) 

ΔOFV = -48.24 ΔOFV =  
-17.14 

ΔOFV =  
-17.74 

ΔOFV =  
-26.08 

a OFV without constant (without PRIOR penalty), b OFV with PRIOR penalty, NA: Not Applicable, GFR: Glomerular Filtration Rate, mL/min (median = 82.44 in dataset B, 84.34 in the pooled datasets A and B);  
 

 1. The first strategy was useful to verify the significance of a covariate previously 
included in a prior model. In this case example, the covariate identified on the previous 
dataset was not found significant on the new dataset. Its impact was different between 
the two subpopulations from which the previous and the new datasets were sampled. 
Therefore, one should be very careful when using a previously identified covariate as prior 
on a new dataset, especially when the covariate was identified in a different population.  

REFERENCES: [1] Gisleskog, P.O., Karlsson, M.O. & Beal, S.L. J Pharmacokinet Pharmacodyn (2002) 29: 473  [2] Robert J. Bauer (ICON): NONMEM 7.4: Workshop for Advanced Methods   [3] https://uupharmacometrics.github.io/PsN/docs.html 

Dataset B was analyzed using models A, A1 and A2 with a “PRIOR approach”  using informative priors. Covariates were handled in two different ways: 

Covariates that were found statistically significant using strategies 1 and 2 (on dataset B) were compared to those of Model AB (pooled dataset A and B) used as a reference. 

2. Identification of new covariates: 
We performed an SCM on the parameters estimated on dataset B only (Figure 3).  
The final model obtained is called Model B2’.  

Dataset Aa  

Model A 

= n Model A minus 1 covariate (first step of backward deletion)  
   Dataset Aa  
+ Dataset Bb 

Model AB 
(reference) 

1. Assessment of the significance of the covariates included in model A for dataset B 
Likelihood Ratio Test (p < 0.001, ΔOFV > 10.8), as a backward deletion,  
between Models B and B1 (Figure 2) 

Dataset B Model B 
Model A estimated on Dataset B ,  
with informative prior of Model A  

on all parameters 

Dataset B n Model(s) B1 
Model A1 estimated on Dataset B ,  
with informative prior of Model A1  

on all parameters 

Difference of 
Objective 
Function 
Value 
(ΔOFV) 

Dataset B Model B2 
Model A2 estimated on Dataset B,  

with informative prior of Model A2 only on 
poorly estimated parameters (RSE>50%) 

Model B2’ 

SCM on parameters 
estimated without 
prior information 

Model A2 = Pharmacostatistical Model A (no covariate) 

n Model(s) A1 

= Model A with n covariates 

2.  Search for new covariates. Model B2 had informative priors only on Ka, the 
absorption rate constant. Therefore, SCM was performed on clearance and volume. 
Model B2’ included the same covariates as Model AB, except the age on clearance. 

The pharmacostatistical Models A and AB were mono-compartmental with a first order absorption and a linear elimination. Interindividual variability was estimated on all 
parameters and using  an w block between clearance and volume. Model A only included the effect of age on clearance, thus model A1 (backward Step 1) and model A2 (no 
covariate)  were the same. The results of the two strategies to handle covariates on dataset B are presented below (Table 1): 

With both strategies to analyze dataset B, the covariate age which was included on clearance in both Models A and AB was not found to be 
statistically significant. This could be explained by the large difference in age distribution between Datasets A and B, together with a  
different impact of age on clearance across young and elderly subjects. Indeed, in model AB, clearance increased with age for subjects  
 

AGE Mean  Median  Min  Max  SD  

Dataset A 42 36 19  77  18 

Dataset B 68  68 44  85  7 

younger than 66 years old, and decreased beyond this age. This supports the results of the first strategy: the prior relation assessed on young subjects was not relevant to analyze our 
sparse data in elderly patients. However, the second strategy was not powerful enough to find the reducing impact of age on clearance in elderly patients. 

Figure 1: datasets and models built without Priors 

a dataset A: rich data from one phase I study (36 healthy volunteers, 546 samples) and one phase II study (18 patients, 154 samples) 
b dataset B: sparse data from one phase IIb study (216 patients, 1171 samples) 

covariates when using the prior approach begs two questions: 
1. How do we test the significance of a covariate identified with a previous 

dataset (e.g. rich data) for a new dataset (e.g. sparse data) ?  
2. How can we identify new covariates on the sparse dataset? 

Figure 2: datasets and models built with Priors, first strategy Figure 3: datasets and models built with Priors, second strategy 

 2.  The second strategy allowed to build a model very close to the reference model: 
new covariates were successfully identified on parameters estimated only on the 
sparse dataset, except for one covariate. Of note, in the reference model, this covariate 
had a different impact on the two subpopulations. 
To generalize our results, this approach should be performed on simulations and 
challenged on other molecules and on datasets of different sizes. 

Table 1: OFV, structure and estimates of the models 

Table 2: distribution of the age 
WT: weight, kg (median = 77 in all datasets). The covariate age on clearance in the Model AB was encoded as a « hockey stick », or piece-wise linear function:  
CLAGE was  calculated with CLAGE1 when the age was below the median age of the pooled dataset (A and B), i.e., 66 years old, and with CLAGE2 when it was higher.  
 


