

Dose individualization of indisulam to reduce the risk of severe myelosuppression

Anthe S. Zandvliet¹, Jan H.M. Schellens^{2,3}, William Copalu⁴, Jantien Wanders⁴, Jos H. Beijnen^{1,2}, Alwin D.R. Huitema¹

(1) Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, The Netherlands;

(2) Beta Faculty, Department of Pharmaceutical Sciences, Division of Biomedical Analysis, Section of Drug Toxicology, Utrecht University, Utrecht, The Netherlands;

(3) Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands;
 (4) Eisai Ltd., London, United Kingdom.

Introduction

Indisulam:

- An investigational anticancer drug.
- · Currently in phase II clinical development.
- · Myelosuppression is dose-limiting.
- Treatment with indisulam is complicated by wide interpatient variability regarding drug exposure and severity of myelosuppression.

Aim:

- To investigate the impact of patient-related covariates on PK-PD parameters related to indisulam-induced hematological toxicity.
- To identify patients at risk of developing severe myelosuppression.
- To develop an algorithm for dose individualization of indisulam.

Methods

Data:

• 7 phase I studies and 6 phase II studies.

412 patients. PK-PD model:

- -K-PD model:
- Previously developed structural model (Fig1).
 Indisulam concentrations, neutrophil and
- thrombocyte counts simultaneously analyzed.

Covariate analysis :

- Covariate analysis according to a prespecified plan: only plausible relationships were evaluated.
- Demographics, physical condition, prior treatment, concomitant medication, CYP2C genotype and biochemistry.

Evaluation of clinical relevance :

- Simulation study to determine the relative risk of dose limiting myelosuppression for the 2.5 and 97.5 percentiles of each patient characteristic versus the median.
- A relative risk of less than 0.9 or more than 1.1 was considered clinically relevant.

Development of a dosing algorithm :

 The correlation between patient characteristics and the risk of severe neutropenia was minimized.

Figure 1: Structural PK-PD model of indisulam-induced myelosuppression.[1-3]

Results

Table 1: Statistically significant covariate relationships and their clinical relevance.

Pharmacokinetic covariates	Related parameter	Covariate effect	Relative risk (RR) of dose limiting haematological toxicity
body surface area (m ²) and WT (kg)	V _{max} CL B _{max TIS}	(BSA/1.78) ^{1.20} (WT/69) ^{0.75} (WT/69) ^{-0.621}	BSA=1.42 / WT = 45→ RR= 1.13
race (0=Japanese; 1=Caucasian/Hispanic/Black)	V _{max}	(1+0.613) ^{race}	Japanese → RR= 1.19
CYP2C9 *3 polymorphism	V _{max}	(1-0.309·MUT)	heterozygous → RR= 1.15
(wildtype: MUT=0; heterozygous: MUT=1; homozygous: MUT=2)			homozygous→ RR= 1.38
CYP2C19 *2 / *3 polymorphism	CL	(1-0.487·MUT)	heterozygous → RR= 1.45
(wildtype: MUT=0; heterozygous: MUT=1; homozygous: MUT=2)			homozygous→ RR= 2.34
Pharmacodynamic covariates			
Sex (0=female; 1=male)	MTT _{neu} MTT _{ptt}	(1+0.225) ^{sex} (1+0.214) ^{sex}	female → RR= 1.18
prior chemotherapy	slope _{neu}	(1+PC·0.0994)	PC=2 → RR= 1.06
(no prior chemotherapy: PC=0; one or two prior courses: PC=1; three or more prior courses: PC=2)			

Table 2: Algorithm for dose individualization.

Patient characteristic	Score	Example 1	Example 2
Sex			
Female	-3		-3
Male	0	0	
CYP2C genotype			
wildtype	0	0	
heterozygous CYP2C9*3	-2		
homozygous CYP2C9*3	-4		
heterozygous CYP2C19*2 or *3	-6		
homozygous CYP2C19*2 or *3	-12		-12
Race			
Caucasian	0	0	
Japanese	-1		-1
Baseline neutrophil count			
< 4·10 ⁹ /L	-5		
> 8·10 ⁹ /L	+5	+5	
Total score			
		+5	-16
Individual dose (mg/m²)	775 +	900	375
	total agora 25		

Example 1: application of the dosing algorithm for a Caucasian male patient with a wildtype genotype and a high baseline neutrophil count of $9 \cdot 10^{9}/L \rightarrow 900$ mg/m². **Example 2:** application of the dosing algorithm for a Japanese female patient with a CYP2C19 *2/*2 genotype and a normal baseline neutrophil count $\rightarrow 375$ mg/m².

Figure 2: Distribution of individual indisulam doses based on the dosing algorithm, for each of the 412 patients in the study population .

Dosing algorithm

BSA-based dosing

CYP2C19 genotype

Figure 3: Risk of severe myelosuppression after a 1-hour infusion of indisulam.

- Body size, CYP2C genotype and baseline blood cell counts were the major determinants of the risk of dose-limiting haematological toxicity.
- A reduced dose was recommended for 1 out of every 4 patients in order to enhance treatment safety.
- An increased dose was recommended for 2 out of every 4 patients, which may be beneficial for treatment efficacy.

Conclusion

- This study has identified patient characteristics related to an increased risk of severe myelosuppression after therapy with indisulam.
- Dose individualization based on these patient characteristics may contribute to treatment optimization.

References

- [1] Zandvliet et al. JPP 2006
- [2] Friberg et al. JCO 2002
- [3] Van Kesteren et al. Invest New Drugs 2005