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Context

Pharmacogenetics is the study of DNA variations on genes coding for

proteins involved in drug absorption, distribution, metabolism,

elimination and effect in relation to the inter-individual variability in

drug response 1

Increasing availability of pharmacogenetic data

selection of metabolic pathways during drug development
individualized therapy
integration of diversity in population genetics

Statistical analyses
ANOVA-based approach on derived PK parameters

loss of information provided by the complete time profile
does not account for additional effects or interactions
no direct predictions or dosing recommendations

→֒ Nonlinear Mixed effect models (NLMEM)

1Licinio et Wong, 2002; Kalow et al., 2001
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Asymptotic tests in NLMEM

A biallelic single nucleotide polymorphism (SNP)

common, rare homozygotes and heterozygotes
effect on pharmacokinetic parameter φi

genotypic model

φi = µ + βGi
+ ηi ηi ∼ N(0, ω)

βGi
=











0 if Gi = common homozygote

β1 if Gi = heterozygote

β2 if Gi = rare homozygote

Mbase : {β1 = β2 = 0}

Mfull : {β1 6= β2 6= 0}

Likelihood ratio test (LRT)
S = −2 × (Lbase − Lfull) ∼ χ2

2

Lbase et Lfull the loglikelihoods of Mbase and Mfull

Wald test
W =

(

β1

β2

)T

V −1
(

β1

β2

)

∼ χ2

2

V: block for β1 and β2 of the estimation variance matrix

→֒ Type I error inflation in studies with small sample size and/or
unbalanced genotypes 2,3

2Bertrand et al. Journal of Biopharmaceutical Statistics, 2008
3Bertrand et al. Journal of Pharmacokinetics and Pharmacodynamics, 2009
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Objectives

To propose and evaluate by simulation some alternatives to the
asymptotic tests to detect a SNP effect on a pharmacokinetic
parameter using NLMEM

1. a permutation test for both statistics
2. the use of a F-distribution for the Wald test

four different values considered for the denominator degrees of
freedom (DF )

To apply these methods to the analysis of the pharmacogenetics
of indinavir in the COPHAR2-ANRS 111 trial 4

4Bertrand et al. European Journal of Clinical Pharmacology, 2009
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Permutation test
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F-distribution based alternative

DF derived from balanced, multilevel ANOVA proposed by Pinheiro et
Bates (2000)

DFPB =

N
∑

i=1

ni − (N + p + k − 2)

p = number of pharmacokinetic parameters
k = number of effect coefficients
implemented in the nlme function in R

DF proposed by Wolfinger (2000)

DFW = N − q
q = number of random effects
implemented in the NLMIXED procedure in SAS

DF adapted from a method developed by Gallant (1975) in
multivariate nonlinear models

DFG = N − p
with V multiplied by a factor N/DFG

DF from the Satterthwaite formula (1941) extended to NLMEM

DFFC ≈ 2V 2/Var(V )
implemented in the MIXED procedure in SAS for LMEM
extension to NLMEM implemented in MONOLIX only

Julie Bertrand PAGE 08/06/11 6 / 15
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Simulation settings

Pharmacokinetic data

model and parameters inspired from the COPHAR2 study

exponential model for the
inter-individual variability (IIV)

proportional model for the residual
error (σ = 20%)

Genetic effect under the alternative hypothesis (H1)

Julie Bertrand PAGE 08/06/11 7 / 15
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Simulated Data (N=40/n=4)
0

20
00

40
00

60
00

80
00

10
00

0

S
im

ul
at

ed
 c

on
ce

nt
ra

tio
ns

 (
ng

/m
L)

0 1 3 6 12

Time (h)

Common homozygote

0
20

00
40

00
60

00
80

00
10

00
0

S
im

ul
at

ed
 c

on
ce

nt
ra

tio
ns

 (
ng

/m
L)

0 1 3 6 12

Time (h)

Heterozygote

Under H0

0
20

00
40

00
60

00
80

00
10

00
0

S
im

ul
at

ed
 c

on
ce

nt
ra

tio
ns

 (
ng

/m
L)

0 1 3 6 12

Time (h)

Rare homozygote

0
20

00
40

00
60

00
80

00
10

00
0

S
im

ul
at

ed
 c

on
ce

nt
ra

tio
ns

 (
ng

/m
L)

0 1 3 6 12

Time (h)

Common homozygote

0
20

00
40

00
60

00
80

00
10

00
0

S
im

ul
at

ed
 c

on
ce

nt
ra

tio
ns

 (
ng

/m
L)

0 1 3 6 12

Time (h)

Heterozygote

Under H1

0
20

00
40

00
60

00
80

00
10

00
0

S
im

ul
at

ed
 c

on
ce

nt
ra

tio
ns

 (
ng

/m
L)

0 1 3 6 12

Time (h)

Rare homozygote

Julie Bertrand PAGE 08/06/11 8 / 15



Introduction Objectives Simulation study Application Conclusions

Results from previous simulation studies 2,3

1000 simulated data sets under H0

FOCE-I in NONMEM 5

SAEM in MONOLIX 2.1

N=40/n=4 N=80/n=2 N=100/n=4,1 N=200/n=4

Test Algorithm K α K α K α K α

LRT
FOCE-I 964 7.9 956 5.0

SAEM 1000 8.9 1000 8.7 1000 8.4 1000 5.1

Wald
FOCE-I 924 11.7 860 6.5

SAEM 1000 7.6 1000 7.8 1000 6.8 1000 5.9

K = number of data sets on which the test could be performed
α = type I error
Prediction interval for 5% = [3.6 − 6.4]

2Bertrand et al. Journal of Biopharmaceutical Statistics, 2008
3Bertrand et al. Journal of Pharmacokinetics and Pharmacodynamics, 2009
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Evaluation

N=40/n=4

Type I error and power

200 simulated data sets

Estimation algorithm

FOCE-I in NONMEM 7.2
SAEM in MONOLIX 2.1
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Type I error
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Type I error
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 around 5%

Improvement in FOCE-I stability in NONMEM 7.2 with K ≥ 195

Inflation corrected using the permutation and simulation-based
approaches for both estimation algorithms

Inflation corrected using the DFG with SAEM only

DFPB=117 close to asymptotic estimate
DFW =37 and DFFC=39.8 [36.3-43.8] close to N
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Power
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Similar Power estimates for both tests, about 70% after
correction using SAEM
Loss of power for the Wald test with FOCE-I after correction
based on permutations or simulations

strong correlation of the genetic effect coefficients with their
estimation error
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COPHAR2-ANRS 111 study

Multicentre noncomparative pilot trial

to evaluate the impact of therapeutic drug monitoring of protease
inhibitors in HIV-positive patients näıve of treatment

Indinavir pharmacogenetic substudy

40 pharmacokinetic profiles at steady state
short term efficacy and toxicity outcomes
ABCB1 gene exons 21 and 26, CYP3A4*1B, CYP3A5*3 and *6

Covariate model building

modelling performed using SAEM in MONOLIX 2.1
screening on individual parameter estimates using nonparametric
tests
forward selection based on LRT
covariates in the final model assessed with all methods
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Covariate model
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Asymptotic tests = Age on Cl/F and CYP3A4*1B1B on ka

→֒ age effect discarded based on Permutation test and DFG

⇒ 70% decrease in indinavir ka in CYP3A4*1B1B patients

⇒ lower Cmax and short term triglyceride toxicity in CYP3A4*1B1B
patients
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Conclusions

Type I error inflation of asymptotic tests in pharmacogenetic
studies with small sample size and/or unbalanced genotypes

Permutation based approach
feasible in pharmacogenetic studies for both LRT and Wald test
comes with substantial computational burden

F-distribution based approach DFG

easy to implement
validated on real data and other simulated designs (N=80/n=2
and N=100/n=4,1)
further studies with more complex variability model required
effective due to inflation factor N/DFG for the under-evaluation
of the estimation variance

restricted maximum likelihood 5 ?

⇒ First use asymptotic test plus DFG and in case of discrepancy
perform permutations

5Meza et al. Biometrical Journal, 2007
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