Joint modelling of individual target lesions and survival to characterize the variability in the response to immunotherapy versus chemotherapy in advanced bladder cancer

Marion Kerioui, Julie Bertrand, François Mercier, Solène Desmée, René Bruno, Jérémie Guedj

INSERM UMR 1137, "Infection, Antimicrobials, Modeling, Evolution", Paris INSERM UMR 1246, "methodS in Patients-centered outcomes & HEalth ResEarch", Tours Genentech/Roche Clinical Pharmacology & Institut Roche, Boulogne-Billancourt, France

July 1st, 2022

INTRODUCTION	Methods	Results	Concl
0000	00000	0000000	0

TREATMENT RESPONSE EVALUATION

Tumor burden based on RECIST¹, relies on the Sum of the Longest Diameters (SLD) of the target lesions

¹Eisenhauer et al Eur J Cancer (2009)

INTRODUCTION
0000
SLD LIMITATIONS

Results 0000000 Conclusion

 \twoheadrightarrow SLD aggregates the information at the patient level

• No distinction across target lesions,

²Mercier et al *J Pharmacokinet Pharmacodyn* (2020)

³Krishnan et al *CPT Pharmacometrics Syst Pharmacol* (2021)

⁴Vera Yunca et al AAPS ℑ (2020)

M Kerioui

INTRODUCTION 0000 SLD LIMITATIONS

Methods 00000 Results

Conclusion

 \rightarrow SLD aggregates the information at the patient level

- No distinction across target lesions,
- Intra-patient variability might be partly explained by tumor location, that may impact lesion kinetics ^{2,3}, and association with survival⁴.

²Mercier et al J Pharmacokinet Pharmacodyn (2020)

³Krishnan et al CPT Pharmacometrics Syst Pharmacol (2021)

⁴Vera Yunca et al AAPS ℑ (2020)

M KERIOUI

INTRODUCTION	
0000	

Results 00000000

INCREASED VARIABILITY IN THE RESPONSE TO IMMUNOTHERAPY TREATMENTS?

• Several studies reported the occurrence of Dissociated Responses (DR) to treatment^{5,6,7,8,9}

MDPI

Teenka et al. IMC Cancer (2000) 20.307 https://doi.org/10.1186/s12885-629-6704 e

BMC Cancer

RESEARCH ARTICL

Dissociated responses at initial computed tomography evaluation is a good prognostic factor in non-small cell lung cancer patients treated with antiprogrammed cell death-1/ligand 1 inhibitors

Takehiro Toosla¹⁰, Satoru Hazono¹, Hinaki Sakamoto¹, Hinaki Yoshiaki Yoshiaki Amino¹, Shinya Uamasu¹, Takehiro Toohoxwa¹, Toakaa Hasegawa I, Ken Uchbori¹, Notio Tanagton¹, Atsuchi Horike¹, Takehi Hoss¹, Maahin Sekiv¹, Ahiho Germin¹, and Makoo Ninto¹¹

Pauline Vaflard¹ · Xavier Paoletti²³ · Vincent Servois⁴ · Patricia Tresca¹ · Elvire Pons-Tostivint³ · Marie-Paule Sablin¹ · Francesco Ricc¹ · Depline Loirat ¹ · Sagibene Hescost · Nouritza Torossian¹ · Diana Bello Roufal¹ · Maud Kamal¹ · Edith Borcoman¹ · Christophe Le Tourneau ^{1,26}0

Dissociated Response in Metastatic
Cancer: An Atypical Pattern Brought
Into the Spotlight With
Immunotherapy

Olivier Humbert¹²⁴ and David Chardin¹²

¹Department of Nuclear Medicine, Cambra Antoine Lacassages, Université COte d'Asta, Nice, Frances, ⁴ DHO UNIV & 4385; Université COte d'Asta, Nice, Frances

Organ-Specific and Mixed Responses to Pembrolizumab in Patients with Unresectable or Metastatic Urothelial Carcinoma: A Multicenter Retrospective Study

Takato Shimira ¹, Makito Mityake ^{1,4}0, Nabataka Nishimura ¹, Kaniaki Isone ¹, Koye Tujii ¹, Yasuke Lenura ⁴, Kanuki Kihiawa ⁸, Chihira Onneti ⁶, Milouru Tentazawa ⁷, Tanisiabi Meeska ⁴, Yuki Oda ⁵, Tatsuki Miyamole ¹⁰, Shutta Heri ¹, Yosuke Meiziawa ¹, Dainke Gothi ¹, Yasushi Nakai ¹⁰, Kazumaa Terintoh ¹, Nabumchi Taraka ¹ and Kiyuhike Jujinon ¹, Yasushi Nakai ¹⁰ de Nasu Tushaga Research and Teratemet Group ¹

This phenomenon remains controversial¹⁰

Investigational New Drugs (2021) 39:1170-1178 https://doi.org/10.1007/s10637-021-01077-7

SHORT REPORT

Dissociated response and clinical benefit in patients treated with nivolumab monotherapy

Yuki Sato¹ • Takeshi Morimoto^{2,3} • Shigeo Hara⁴ • Kazuma Nagata¹ • Kazutaka Hosoya¹ • Atsushi Nakagawa¹ • Ryo Tachikawa¹ • Keisuke Tomii¹

⁵ Humbert et al Front Oncol (2020)
⁶ Vaflard et al Drugs R D (2020)
⁷ Shimizu et al Cancers (2022)

⁸Tozuka et al BMC Cancer (2020)
⁹Sato et al Invest New Drugs (2021)
¹⁰Litière et al J Clin Oncol (2019)

M KERIOUI

◆□▶▲@▶▲目▶▲目▶ ▲目■ ���

INTRODUCTION	
0000	

OBJECTIVES

Methods 00000 Results 00000000 Conclusion O

• To quantify both inter-patient and intra-patient between lesions variability

INTRODUCTION
0000
Objectives

Results 00000000

- To quantify both inter-patient and intra-patient between lesions variability
- To compare the intra-patient variability during immunotherapy versus during chemotherapy

INTRODUCTION	
0000	
-	

Results 00000000

OBJECTIVES

- To quantify both inter-patient and intra-patient between lesions variability
- To compare the intra-patient variability during immunotherapy versus during chemotherapy
- To assess the benefit of target lesions follow-up in predicting the individual treatment outcome

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

INTRODUCTIO	N
0000	

Results 00000000

CLINICAL APPLICATION

Phase 3 clinical trial IMvigor211¹⁴:

- 931 patients suffering from advanced or metastatic bladder cancer who did not respond to chemotherapy
- Randomized (1:1) between an atezolizumab and a chemotherapy control arm
- Benefit of atezolizumab compared to chemotherapy on overall survival in the intention-to-treat population

IMvigor211	
Chemotherapy	Atezolizumab
443	457
1064	1069
2981	3716
	IMvige Chemotherapy 443 1064 2981

14 Powles et al The Lancet (2018)

15 Kerioui et al ESMO Open (2022)

INTRODUCTIO	N
0000	

Results 00000000

CLINICAL APPLICATION

Phase 3 clinical trial IMvigor211¹⁴:

- 931 patients suffering from advanced or metastatic bladder cancer who did not respond to chemotherapy
- Randomized (1:1) between an atezolizumab and a chemotherapy control arm
- Benefit of atezolizumab compared to chemotherapy on overall survival in the intention-to-treat population

¹⁴Powles et al The Lancet (2018)

15 Kerioui et al ESMO Open (2022)

	IMvigor211	
	Chemotherapy	Atezolizumab
Data description		
Analysis population (N)	443	457
Number of target lesions	1064	1069
Number of measurements	2981	3716

- Focus on five locations: Lymph nodes, Lung, Liver, Bladder, Other
- Baseline covariates: alkaline phosphatase concentration, hemoglobin concentration, neutrophil-to-lymphocyte ratio and ECOG score¹⁵

INTRODUCTION	Methods	Results	Conclus
0000	0000	0000000	0
	-		

Claret simplified Tumor Growth Inhibition (sTGI) model¹⁶:

In absence of treatment: $\frac{dTS(t)}{dt} = g \times TS(t)$

Tumor parameters:

- *TS*₀: baseline sum of longest diameters
- *g*: natural tumor growth rate

¹⁶ Claret et al J Clin Oncol (2013)

INTRODUCTION	Methods	Results	Con
0000	0000	0000000	0

Claret simplified Tumor Growth Inhibition (sTGI) model¹⁶:

After treatment initiation: $\frac{dTS(t)}{dt} = g \times TS(t) - \epsilon \times TS(t)$

Tumor parameters:

- *TS*₀: baseline sum of longest diameters
- *g*: natural tumor growth rate

Treatment induced parameters:

• ϵ : tumor growth inhibition

¹⁶ Claret et al J Clin Oncol (2013)

INTRODUCTION	Methods	Results	Conclu
0000	0000	0000000	0

Claret simplified Tumor Growth Inhibition (sTGI) model¹⁶:

After treatment initiation: $\frac{d\text{TS}(t)}{dt} = g \times \text{TS}(t) - \epsilon \times e^{-c \times t} \times \text{TS}(t)$

Tumor parameters:

- *TS*₀: baseline sum of longest diameters
- *g*: natural tumor growth rate

Treatment induced parameters:

- ϵ : tumor growth inhibition
- *c*: the treatment effect duration

¹⁶ Claret et al J Clin Oncol (2013)

Introduction	Methods	Results	Conclu
0000	0000	0000000	0

Claret simplified Tumor Growth Inhibition (sTGI) model¹⁶:

After treatment initiation: $\frac{d\text{TS}(t)}{dt} = g \times \text{TS}(t) - \epsilon \times e^{-c \times t} \times \text{TS}(t)$

Tumor parameters:

- *TS*₀: baseline sum of longest diameters
- *g*: natural tumor growth rate

Treatment induced parameters:

- ϵ : tumor growth inhibition
- *c*: the treatment effect duration

¹⁶Claret et al J Clin Oncol (2013)

INTRODUCTION	
0000	

MODELLING TUMOR SIZE AND SURVIVAL

Motivations:

- To inform on the underlying mechanism of response to treatment
- To characterize the impact of the biomarker kinetics on the time-to-event process (and to improve prediction)
- To account for the bias due to early end of longitudinal follow-up in the most-at-risk patients^{17,18}

17 Desmée et al AAPS J (2016)

- ¹⁸Bjornsson et al AAPS J (2016)
- 19 Kerioui et al Br J Clin Pharmacol (2021)
 - M KERIOUI

INTRODUCTION	
0000	

MODELLING TUMOR SIZE AND SURVIVAL

Motivations:

- To inform on the underlying mechanism of response to treatment
- To characterize the impact of the biomarker kinetics on the time-to-event process (and to improve prediction)
- To account for the bias due to early end of longitudinal follow-up in the most-at-risk patients^{17,18}

→ Nonlinear joint model of Tumor Size dynamics and survival¹⁹

17 Desmée et al AAPS J (2016)

18 Bjornsson et al AAPS J (2016)

19 Kerioui et al Br J Clin Pharmacol (2021)

M KERIOUI

・ロト・日本・日本・日本・日本・今日・

INTRODUCTION	
0000	

Results 00000000

MODELLING HIERARCHICAL DATA

²⁰Kerioui et al Stat in Med (2020)

INTRODUCTION	
0000	

Results 00000000

MODELLING HIERARCHICAL DATA

→ Bayesian inference using Hamiltonian Monte-Carlo (HMC) algorithm in Stan software²⁰

²⁰Kerioui et al Stat in Med (2020)

INTRODUCTION	
0000	

Results 0000000 Conclusion O

Multilevel joint model

 $y_{i,j,k,l}$ is the l^{th} measurement of the k^{th} target lesion in location j in patient i

$$y_{i,j,k,l} = TS(t_{i,l},\psi_{i,j,k}) + \left(\sigma_{1,j} + \sigma_{2,j} \times TS(t_{i,l},\psi_{i,j,k})\right)e_{i,j,k,l}$$

INTRODUCTION	
0000	

Results 0000000 Conclusion O

Multilevel joint model

 $y_{i,j,k,l}$ is the l^{th} measurement of the k^{th} target lesion in location j in patient i

$$\begin{aligned} y_{i,j,k,l} &= TS(t_{i,l},\psi_{i,j,k}) + \left(\sigma_{1,j} + \sigma_{2,j} \times TS(t_{i,l},\psi_{i,j,k})\right) e_{i,j,k,l} \\ \psi_{i,j,k} &= \mu \times \exp\left(\xi_j + \eta_i + \rho_{i,j,k}\right) \text{ with } \eta_i \sim \mathcal{N}(0,\omega_1^2) \text{ and } \rho_{i,j,k} \sim \mathcal{N}(0,\omega_2^2) \end{aligned}$$

INTRODUCTION	
0000	

Results 0000000 Conclusion O

Multilevel joint model

 $y_{i,j,k,l}$ is the l^{th} measurement of the k^{th} target lesion in location j in patient i

$$\begin{aligned} y_{i,j,k,l} &= TS(t_{i,l},\psi_{i,j,k}) + \left(\sigma_{1,j} + \sigma_{2,j} \times TS(t_{i,l},\psi_{i,j,k})\right) e_{i,j,k,l} \\ \psi_{i,j,k} &= \mu \times \exp\left(\xi_j + \eta_i + \rho_{i,j,k}\right) \text{ with } \eta_i \sim \mathcal{N}(0,\omega_1^2) \text{ and } \rho_{i,j,k} \sim \mathcal{N}(0,\omega_2^2) \end{aligned}$$

(E) < E > E|= 9000

INTRODUCTION	
0000	

Results 0000000 Conclusion O

Multilevel joint model

 $y_{i,j,k,l}$ is the l^{th} measurement of the k^{th} target lesion in location j in patient i

$$\begin{aligned} y_{i,j,k,l} &= TS(t_{i,l},\psi_{i,j,k}) + \left(\sigma_{1,j} + \sigma_{2,j} \times TS(t_{i,l},\psi_{i,j,k})\right) e_{i,j,k,l} \\ \psi_{i,j,k} &= \mu \times \exp\left(\xi_j + \eta_i + \rho_{i,j,k}\right) \text{ with } \eta_i \sim \mathcal{N}(0,\omega_1^2) \text{ and } \rho_{i,j,k} \sim \mathcal{N}(0,\omega_2^2) \end{aligned}$$

< ≧ > < ≧ > 差| = のへで

INTRODUCTION	
0000	

Results 0000000 Conclusion O

Multilevel joint model

 $y_{i,j,k,l}$ is the l^{th} measurement of the k^{th} target lesion in location j in patient i

$$\begin{aligned} y_{i,j,k,l} &= TS(t_{i,l},\psi_{i,j,k}) + \left(\sigma_{1,j} + \sigma_{2,j} \times TS(t_{i,l},\psi_{i,j,k})\right) e_{i,j,k,l} \\ \psi_{i,j,k} &= \mu \times \exp\left(\xi_j + \eta_i + \rho_{i,j,k}\right) \text{ with } \eta_i \sim \mathcal{N}(0,\omega_1^2) \text{ and } \rho_{i,j,k} \sim \mathcal{N}(0,\omega_2^2) \end{aligned}$$

< E > < E > < E ≤ < 0 < 0

INTRODUCTION	
0000	

Results

Conclusion O

Multilevel joint model

 $y_{i,j,k,l}$ is the l^{th} measurement of the k^{th} target lesion in location j in patient i

$$\begin{aligned} y_{i,j,k,l} &= TS(t_{i,l},\psi_{i,j,k}) + \left(\sigma_{1,j} + \sigma_{2,j} \times TS(t_{i,l},\psi_{i,j,k})\right) e_{i,j,k,l} \\ \psi_{i,j,k} &= \mu \times \exp\left(\xi_j + \eta_i + \rho_{i,j,k}\right) \text{ with } \eta_i \sim \mathcal{N}(0,\omega_1^2) \text{ and } \rho_{i,j,k} \sim \mathcal{N}(0,\omega_2^2) \end{aligned}$$

(글) (글) 로(=) () ()

INTRODUCTION	
0000	

Results

Conclusion O

Multilevel joint model

 $y_{i,j,k,l}$ is the l^{th} measurement of the k^{th} target lesion in location j in patient i

$$\begin{aligned} y_{i,j,k,l} &= TS(t_{i,l},\psi_{i,j,k}) + \left(\sigma_{1,j} + \sigma_{2,j} \times TS(t_{i,l},\psi_{i,j,k})\right) e_{i,j,k,l} \\ \psi_{i,j,k} &= \mu \times \exp\left(\xi_j + \eta_i + \rho_{i,j,k}\right) \text{ with } \eta_i \sim \mathcal{N}(0,\omega_1^2) \text{ and } \rho_{i,j,k} \sim \mathcal{N}(0,\omega_2^2) \end{aligned}$$

INTRODUCTION
0000

Results 0000000 Conclusion O

Multilevel joint model

 $y_{i,j,k,l}$ is the l^{th} measurement of the k^{th} target lesion in location j in patient i

$$\begin{aligned} y_{i,j,k,l} &= TS(t_{i,l},\psi_{i,j,k}) + \left(\sigma_{1,j} + \sigma_{2,j} \times TS(t_{i,l},\psi_{i,j,k})\right) e_{i,j,k,l} \\ h(t,\psi_i) &= h_0(t) \times \exp\left(\alpha \times z_i\right) \times \exp\left(\sum_{j=1}^4 \beta_j \times \sum_{k=1}^{K_{i,j}} TS(t,\psi_{i,j,k})\right) \text{ with } h_0(t) = \frac{\gamma}{\lambda} \left(\frac{t}{\lambda}\right)^{\gamma-1} \end{aligned}$$

INTRODUCTION	Methods	Results	CONCLUSION
0000	00000	0000000	0
17			

Multilevel joint model

 $y_{i,j,k,l}$ is the l^{th} measurement of the k^{th} target lesion in location j in patient i

 \rightarrow Inference in both treatment arms separately

INTRODUCTION	Methods	Results	Conclusion
0000	00000	●0000000	0

INDIVIDUAL LESION KINETICS

11 / 19

→ Regardless of treatment, the lymph nodes and lung lesions were smaller at baseline than the liver and bladder lesions

M Kerioui

JULY 1st, 2022

¹IPV=Inter-Patient Variability

²ILV=Inter-Lesion Variability

INTRODUCTION	
0000	

Results

Conclusion O

INDIVIDUAL LESION KINETICS

11 / 19

 \rightarrow In the atezolizumab arm, the liver lesions natural growth was much faster than in the other locations

M Kerioui

<□> <0> <0> <0</p>

¹IPV=Inter-Patient Variability

^{2&}lt;sub>ILV=Inter-Lesion Variability</sub>

INTRODUCTION	
0000	

Results

Conclusion O

INDIVIDUAL LESION KINETICS

→ Tumor regrowth was slightly larger in patients treated with atezolizumab as compared to chemotherapy

¹IPV=Inter-Patient Variability

²ILV=Inter-Lesion Variability

INTRODUCTION	
0000	

METHODS 0000C Results

Conclusion O

INDIVIDUAL LESION KINETICS

→ The shrinkage of the tumor size was larger in the lymph nodes and the lung lesions than in other location...

M Kerioui

¹IPV=Inter-Patient Variability

²ILV=Inter-Lesion Variability

0.006 44

0.003

Lymph Lung Liver 0.02

0.01 -

0.00

Lymph Lung

Bladder Other

→ ... but the durability of the treatment effect was smaller in these locations, as compared to the liver

Lung

Lymph

Liver Bladder Other

0.004

0.002

ŧ∔

Liver Bladder Other

M KERIOUI

Lymph Lung

IULY 1 St 2022

Liver Bladder Other

Location

I vmph

Liver Bladder

Other 4

11 / 19

• Lung

¹IPV=Inter-Patient Variability

 $²_{\rm ILV=Inter-Lesion\ Variability}$

NTRODUCTION	Methods	Results	Conclusion
>000	00000	0000000	0
NDIVIDUAL LESION KINETICS			

-> The shrinkage of the tumor size was lower in patients treated by atezolizumab than in the chemotherapy arm, especially in the liver lesions...

M KERIOUI

Chemotherapy

Atezolizumab

Liver Bladder

Other

¹IPV=Inter-Patient Variability

² ILV=Inter-Lesion Variability

Τ			
0000	00000	0000000	0
INTRODUCTION	Methods	Results	Conclu

→ ... but the duration of the response was longer in patients treated with atezolizumab regardless of tumor location

M KERIOUI

¹IPV=Inter-Patient Variability

²ILV=Inter-Lesion Variability

INTRODUCTION	
0000	

METHODS 00000 Results

Conclusion O

INDIVIDUAL LESION KINETICS

→ Both IPV¹ and ILV² were similar during atezolizumab and chemotherapy in the baseline tumor size and in the tumor growth

M Kerioui

¹IPV=Inter-Patient Variability

 $²_{\rm ILV=Inter-Lesion\ Variability}$

INTRODUCTION	
0000	

METHODS 00000 Results

Conclusion O

INDIVIDUAL LESION KINETICS

-> Both IPV and ILV of the tumor shrinkage parameter were larger in patients treated with atezolizumab than in those receiving chemotherapy

イロト イヨト イヨト イヨト ショー クタマ

¹IPV=Inter-Patient Variability

 $²_{\rm ILV=Inter-Lesion\ Variability}$

INTRODUCTION	
0000	

METHODS 00000 Results

Conclusion O

INDIVIDUAL LESION KINETICS

→ In the response duration parameter, ILV was twice larger in patients treated with atezolizumab than in those treated with chemotherapy

イロト イヨト イヨト イヨト ショー クタマ

¹IPV=Inter-Patient Variability

²ILV=Inter-Lesion Variability

INDIVIDUAL FITS OF TUMOR SIZE KINETICS

M KERIOUI

JULY 1st, 2022

INTRODUCTION	Methods	Results	Conclus
0000	00000	000000	0

Association between organ tumor burden and survival

→ The association between lesion dynamics and survival strongly depended on the tumor location, especially in patients treated with atezolizumab

INTRODUCTION	Methods	Results	Conclus
0000	00000	0000000	0

Posterior Predictive Checks of survival curves (based on 1000 replicates)

 \blacktriangleright The model was well able to replicate the observed survival curves in both treatment arms ,

Occurrence of Dissociated Responses (DR)

	6 months		12 ma	onths
	Chemotherapy	Atezolizumab	Chemotherapy	Atezolizumab
N total	279	294	144	187
>1 lesion	191	209	85	137
DR(1)	41 (21%)	39 (19%)	15 (18%)	27 (20%)

• DR(1) at least one target lesion progressing (+20% from NADIR) and one target lesion without progression

Occurrence of Dissociated Responses (DR)

	6 mo	nths	12 mc	onths
	Chemotherapy	Atezolizumab	Chemotherapy	Atezolizumab
N total	279	294	144	187
>1 lesion	191	209	85	137
DR(1)	41 (21%)	39 (19%)	15 (18%)	27 (20%)
DR(2)	34 (18%)	35 (17%)	6 (7%)	25 (18%)

- DR(1) at least one target lesion progressing (+20% from NADIR) and one target lesion without progression
- DR(2) at least one target lesion with a positive slope $\left(\frac{dTS(t)}{dt} > 0\right)$ and one target lesion with a negative slope $\left(\frac{dTS(t)}{dt} < 0\right)$

OCCURRENCE OF DISSOCIATED RESPONSES (DR)

	6 months		12 months	
	Chemotherapy	Atezolizumab	Chemotherapy	Atezolizumab
N total	279	294	144	187
>1 lesion	191	209	85	137
DR(1)	41 (21%)	39 (19%)	15 (18%)	27 (20%)
DR(2)	34 (18%)	35 (17%)	6 (7%)	25 (18%)
DR(3)	12 (6%)	15 (7%)	7 (8%)	23 (17%)

- DR(1) at least one target lesion progressing (+20% from NADIR) and one target lesion without progression
- DR(2) at least one target lesion with a positive slope $\left(\frac{dTS(t)}{dt} > 0\right)$ and one target lesion with a negative slope $\left(\frac{dTS(t)}{dt} < 0\right)$
- DR(3) at least one target lesion progressing (+20% from NADIR) and one target lesion responding (-30% from baseline)

Introduction	Methods	RESULTS	CONCLUSION
0000	00000	00000000	0

DYNAMIC PREDICTIONS

→ We aim to predict the conditional survival probability $S_i(s + t|s) = \mathbb{P}(X_i > s + t|X_i > s, \mathcal{Y}_i(s))$ up to the prediction horizon s + t following methodology by Desmée et al²¹

²¹Desmée et al, BMC Med Res Methodol (2017)

²² Blanche et al Stat Med (2013)

Introduction	Methods	Results	CONCLUSION
0000	00000	00000000	0

DYNAMIC PREDICTIONS

→ We aim to predict the conditional survival probability $S_i(s + t|s) = \mathbb{P}(X_i > s + t|X_i > s, \mathcal{Y}_i(s))$ up to the prediction horizon s + t following methodology by Desmée et al²¹

²¹Desmée et al, *BMC Med Res Methodol* (2017)

²² Blanche et al Stat Med (2013)

Introduction	Methods	RESULTS	CONCLUSION
0000	00000	00000000	0

DYNAMIC PREDICTIONS

→ We aim to predict the conditional survival probability $S_i(s + t|s) = \mathbb{P}(X_i > s + t|X_i > s, \mathcal{Y}_i(s))$ up to the prediction horizon s + t following methodology by Desmée et al²¹

 \rightarrow **Area under the ROC curve**²² to assess the model ability to discriminate between individuals

$$AUC(s,t) = \mathbb{P}(S_i(s+t|s) < S_j(s+t|s) | \mathbf{1}_{\{X_i < s+t\}} = 1, \mathbf{1}_{\{X_j < s+t\}} = 0, X_i > s, X_j > s)$$

²¹ Desmée et al, BMC Med Res Methodol (2017)

²² Blanche et al Stat Med (2013)

INTRODUCTION	Methods	Results	CONCLUSION
0000	00000	00000000	0

TIME-DEPENDENT AUC IN THE SUBPOPULATION OF PATIENTS WITH MORE THAN ONE TARGET LESION

INTRODUCTION	Methods	Results	CONCLUSION
0000	00000	00000000	0

Time-dependent AUC in the subpopulation of patients with more than one target lesion

INTRODUCTION	Methods	Results	CONCLUSION
0000	00000	00000000	0

TIME-DEPENDENT AUC IN THE SUBPOPULATION OF PATIENTS WITH MORE THAN ONE TARGET LESION

INTRODUCTION	Methods	Results	CONCLUSION
0000	00000	00000000	0

Time-dependent AUC in the subpopulation of patients with more than one target lesion

INTRODUCTION	Methods	Results	Conclusio
0000	00000	0000000	0

Time-dependent AUC in the subpopulation of patients with liver/bladder lesions

INTRODUCTION	
0000	

Methods 0000C Results 00000000

CONCLUSION

Main results:

- The intra-patient variability in the lesion kinetics parameters represented between 12 and 78% of the total variability
- The intra-patient variability in the durability of the treatment effect was markedly larger during atezolizumab than during chemotherapy (accounting for 40% vs 12% of the total variability respectively)
- Accounting for the intra-patient variability may improve the prediction of death and surpassed a model relying only on SLD, in both treatment arms

²³Netterberg et al Clin. Pharmacol. Ther. (2018)

²⁴ Sato et al Invest New Drugs (2021)

²⁵ Shimizu et al Cancers (2022)

INTRODUCTION	
0000	

Methods 0000C Results 00000000

CONCLUSION

Main results:

- The intra-patient variability in the lesion kinetics parameters represented between 12 and 78% of the total variability
- The intra-patient variability in the durability of the treatment effect was markedly larger during atezolizumab than during chemotherapy (accounting for 40% vs 12% of the total variability respectively)
- Accounting for the intra-patient variability may improve the prediction of death and surpassed a model relying only on SLD, in both treatment arms

Perspectives:

- Integrating immunological measurements²³ or markers to anticipate the durability of response to treatment
- Evaluating whether the occurrence of DR has an impact on the outcome of treatment^{24,25}
- Apply this methodology in other cancer types and other treatments

²³Netterberg et al Clin. Pharmacol. Ther. (2018)

²⁴ Sato et al Invest New Drugs (2021)

²⁵ Shimizu et al Cancers (2022)

Acknowledgements

Thank you for your attention !

Thank you to:

- Jérémie Guedj, Solène Desmée and René Bruno
- Julie Bertrand and François Mercier
- All members of IAME and SPHERE teams
- Jin Jin, Ben Wu, Genentech Clinical Pharmacology team, Magnus Fontes, Head Institut Roche

This PhD was funded by Genentech, Roche and the French National Agency of Research and Technology (ANRT) through a CIFRE agreement.