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Introduction Methods Results Conclusion

Treatment response evaluation

Tumor burden based on RECIST1, relies on the Sum of the Longest Diameters (SLD) of the target lesions

● Up to 5 target lesions within a patient
● Up to 2 target lesions per location

1Eisenhauer et al Eur J Cancer (2009)
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Introduction Methods Results Conclusion

SLD limitations

➙ SLD aggregates the information at the patient level

● No distinction across target lesions,

● Intra-patient variability might be partly explained by
tumor location, that may impact lesion kinetics 2 ,3 ,
and association with survival4 .

2Mercier et al J Pharmacokinet Pharmacodyn (2020)
3Krishnan et al CPT Pharmacometrics Syst Pharmacol (2021)
4Vera Yunca et al AAPS J (2020)
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Introduction Methods Results Conclusion

Increased variability in the response to immunotherapy treatments?

● Several studies reported the occurrence of Dissociated Responses (DR) to treatment5 ,6 ,7 ,8 ,9

● This phenomenon remains controversial10

5Humbert et al Front Oncol (2020)
6Vaflard et al Drugs R D (2020)
7Shimizu et al Cancers (2022)

8Tozuka et al BMC Cancer (2020)
9Sato et al Invest New Drugs (2021)

10Litière et al J Clin Oncol (2019)
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Objectives

● To quantify both inter-patient and intra-patient between lesions variability

● To compare the intra-patient variability during immunotherapy versus during chemotherapy
● To assess the benefit of target lesions follow-up in predicting the individual treatment outcome
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Introduction Methods Results Conclusion

Clinical application

Phase 3 clinical trial IMvigor21114:
● 931 patients suffering from advanced or metastatic bladder cancer who did not

respond to chemotherapy

● Randomized (1:1) between an atezolizumab and a chemotherapy control arm

● Benefit of atezolizumab compared to chemotherapy on overall survival in the
intention-to-treat population

IMvigor211
Chemotherapy Atezolizumab

Data description
Analysis population (N) 443 457
Number of target lesions 1064 1069
Number of measurements 2981 3716

● Focus on five locations: Lymph nodes, Lung, Liver, Bladder, Other

● Baseline covariates: alkaline phosphatase concentration, hemoglobin
concentration, neutrophil-to-lymphocyte ratio and ECOG score15

14Powles et al The Lancet (2018)
15Kerioui et al ESMO Open (2022)
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Introduction Methods Results Conclusion

Semi-mechanistic model for Tumor Size description

Claret simplified Tumor Growth Inhibition (sTGI) model16:

In absence of treatment: dTS(t )
d t = g ×TS(t )

Tumor parameters:
● T S0: baseline sum of longest diameters
● g : natural tumor growth rate

Treatment induced parameters:

● ϵ: tumor growth inhibition

● c : the treatment effect duration

16Claret et al J Clin Oncol (2013)
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Introduction Methods Results Conclusion

Modelling tumor size and survival
Motivations:

● To inform on the underlying mechanism of response to treatment
● To characterize the impact of the biomarker kinetics on the time-to-event process (and to improve prediction)

● To account for the bias due to early end of longitudinal follow-up in the most-at-risk patients17 ,18

➙ Nonlinear joint model of Tumor Size dynamics and survival19

17Desmée et al AAPS J (2016)
18Bjornsson et al AAPS J (2016)
19Kerioui et al Br J Clin Pharmacol (2021)
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Introduction Methods Results Conclusion

Modelling hierarchical data

➙ Bayesian inference using Hamiltonian Monte-Carlo (HMC) algorithm in Stan software20

20Kerioui et al Stat in Med (2020)
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Introduction Methods Results Conclusion

Multilevel joint model
yi , j ,k,l is the l th measurement of the k th target lesion in location j in patient i

yi , j ,k,l = T S(ti ,l ,ψi , j ,k )+
(
σ1, j +σ2, j ×T S(ti ,l ,ψi , j ,k )

)
ei , j ,k,l

ψi , j ,k =µ×exp
(
ξ j +ηi +ρi , j ,k

)
with ηi ∼N (0,ω2

1) and ρi , j ,k ∼N (0,ω2
2)
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Multilevel joint model
yi , j ,k,l is the l th measurement of the k th target lesion in location j in patient i

yi , j ,k,l = T S(ti ,l ,ψi , j ,k )+
(
σ1, j +σ2, j ×T S(ti ,l ,ψi , j ,k )

)
ei , j ,k,l

h(t ,ψi ) = h0(t )×exp
(
α× zi

)×exp

 4∑
j=1

β j ×
Ki , j∑
k=1

T S(t ,ψi , j ,k )

 with h0(t ) = γ

λ

(
t

λ

)γ−1
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Introduction Methods Results Conclusion

Multilevel joint model
yi , j ,k,l is the l th measurement of the k th target lesion in location j in patient i

➙ Inference in both treatment arms separately
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Introduction Methods Results Conclusion

Individual lesion kinetics

➙ Regardless of treatment, the lymph nodes and lung lesions were smaller at baseline than the liver and bladder lesions
1 IPV=Inter-Patient Variability
2 ILV=Inter-Lesion Variability
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Introduction Methods Results Conclusion

Individual lesion kinetics

➙ In the atezolizumab arm, the liver lesions natural growth was much faster than in the other locations
1 IPV=Inter-Patient Variability
2 ILV=Inter-Lesion Variability
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Introduction Methods Results Conclusion

Individual lesion kinetics

➙ Tumor regrowth was slightly larger in patients treated with atezolizumab as compared to chemotherapy
1 IPV=Inter-Patient Variability
2 ILV=Inter-Lesion Variability
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Introduction Methods Results Conclusion

Individual lesion kinetics

➙ The shrinkage of the tumor size was larger in the lymph nodes and the lung lesions than in other location...
1 IPV=Inter-Patient Variability
2 ILV=Inter-Lesion Variability

M Kerioui July 1st , 2022 11 / 19



Introduction Methods Results Conclusion

Individual lesion kinetics

➙ ... but the durability of the treatment effect was smaller in these locations, as compared to the liver
1 IPV=Inter-Patient Variability
2 ILV=Inter-Lesion Variability
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Introduction Methods Results Conclusion

Individual lesion kinetics

➙ The shrinkage of the tumor size was lower in patients treated by atezolizumab than in the chemotherapy arm, especially in the liver lesions...
1 IPV=Inter-Patient Variability
2 ILV=Inter-Lesion Variability
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Introduction Methods Results Conclusion

Individual lesion kinetics

➙ ... but the duration of the response was longer in patients treated with atezolizumab regardless of tumor location
1 IPV=Inter-Patient Variability
2 ILV=Inter-Lesion Variability
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Introduction Methods Results Conclusion

Individual lesion kinetics

➙ Both IPV1 and ILV2 were similar during atezolizumab and chemotherapy in the baseline tumor size and in the tumor growth
1 IPV=Inter-Patient Variability
2 ILV=Inter-Lesion Variability
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Introduction Methods Results Conclusion

Individual lesion kinetics

➙ Both IPV and ILV of the tumor shrinkage parameter were larger in patients treated with atezolizumab than in those receiving chemotherapy
1 IPV=Inter-Patient Variability
2 ILV=Inter-Lesion Variability
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Introduction Methods Results Conclusion

Individual lesion kinetics

➙ In the response duration parameter, ILV was twice larger in patients treated with atezolizumab than in those treated with chemotherapy
1 IPV=Inter-Patient Variability
2 ILV=Inter-Lesion Variability
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Individual fits of tumor size kinetics
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Introduction Methods Results Conclusion

Association between organ tumor burden and survival

➙ The association between lesion dynamics and survival strongly depended on the tumor location, especially
in patients treated with atezolizumab
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Introduction Methods Results Conclusion

Posterior Predictive Checks of survival curves (based on 1000 replicates)

➙ The model was well able to replicate the observed survival curves in both treatment arms
M Kerioui July 1st , 2022 14 / 19



Introduction Methods Results Conclusion

Occurrence of Dissociated Responses (DR)

6 months 12 months
Chemotherapy Atezolizumab Chemotherapy Atezolizumab

N total 279 294 144 187
>1 lesion 191 209 85 137

DR(1) 41 (21%) 39 (19%) 15 (18%) 27 (20%)

● DR(1) at least one target lesion progressing (+20% from NADIR) and one target lesion without progression

● DR(2) at least one target lesion with a positive slope ( dT S(t )
d t > 0) and one target lesion with a negative slope ( dT S(t )

d t < 0)
● DR(3) at least one target lesion progressing (+20% from NADIR) and one target lesion responding (-30% from baseline)
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Introduction Methods Results Conclusion

Dynamic predictions
➔ We aim to predict the conditional survival probability Si (s + t |s) =P(Xi > s + t |Xi > s,Yi (s)) up to the prediction horizon
s + t following methodology by Desmée et al21

➙Area under the ROC curve22 to assess the model ability to
discriminate between individuals

AUC (s, t ) =P(Si (s + t |s) < S j (s + t |s)|1{Xi <s+t } = 1,1{X j <s+t } = 0, Xi > s, X j > s)

21Desmée et al, BMC Med Res Methodol (2017)
22Blanche et al Stat Med (2013)
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Time-dependent AUC in the subpopulation of patients with more than one target lesion
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Time-dependent AUC in the subpopulation of patients with liver/bladder lesions
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Introduction Methods Results Conclusion

Conclusion

Main results:
● The intra-patient variability in the lesion kinetics parameters represented between 12 and 78% of the total variability
● The intra-patient variability in the durability of the treatment effect was markedly larger during atezolizumab than

during chemotherapy (accounting for 40% vs 12% of the total variability respectively)
● Accounting for the intra-patient variability may improve the prediction of death and surpassed a model relying only on

SLD, in both treatment arms

Perspectives:
● Integrating immunological measurements23 or markers to anticipate the durability of response to treatment
● Evaluating whether the occurrence of DR has an impact on the outcome of treatment24 ,25

● Apply this methodology in other cancer types and other treatments

23Netterberg et al Clin. Pharmacol. Ther. (2018)
24Sato et al Invest New Drugs (2021)
25Shimizu et al Cancers (2022)
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