Multinomial logistic functions in Markov-chain models for modeling sleep architecture: external validation and covariate analysis

Bizzotto R (1)*, Zamuner S (2), De Nicolao G (3), Gomer R (2), Hooker AC (4), Karlsson MO (4)
(1) Dept. of Information Engineering, University of Padova, Padova, Italy
(2) Clinical Pharmacology/Modeling & Simulation, GlaxoSmithKline, Verona, Italy
(3) Dept. of Computer Engineering and Systems Science, University of Pavia, Pavia, Italy
(4) Dept. of Pharmaceutical Biosciences, Uppsala University, Sweden

Introduction

The evaluation of the dynamics of sleep stage distribution through the night is considered a key feature in clinical studies investigating the treatment effects of new molecules for primary insomnia [1].

A mixed-effect Markov-chain model based on piecewise linear multinomial logistic functions has been recently proposed [2, 3] to characterize the time course of transition probabilities between sleep stages in insomniac patients treated with placebo.

Objectives

The aims of this work were to:

A. further develop the model proposed in [2, 3],
B. perform the external validation of model structure and parameters estimates,
C. explore the covariate effects.

Methods

Data

- Two clinical studies were considered, A and B, with N_A = 116 and N_B = 81 insomniac patients, and similar protocols.
- B was used for external validation only.
- In each study, sequences of sleep stages at each 30-second nighttime interval were obtained from the first night of placebo administration.
- Recorded sleep stages were awake (AW), stage 1 (ST1), stage 2 (ST2), slow-wave sleep (SWS) and REM sleep (REM).

Multinomial logistic functions in a Markov-chain model

The time course of sleep stages was assumed to obey to a Markov-chain model, and a population approach was implemented with NONMEM VI. In particular, the relationship between times and individual transition probabilities between sleep stages was modeled through piecewise linear multinomial logistic functions [3]:

\[\log\frac{p_{ij}(t)}{1-p_{ij}(t)} = \sum_{k=1}^{K} \alpha_k f_k(t) \]

where \(p_{ij}(t) \) is the probability of moving from sleep stage \(i \) at time \(t \) to sleep stage \(j \) at time \(t \) for subject \(i \), and similarly for \(p_{ij}(t) \).

Five sub-models were built, each one modeling the transitions from a specific sleep stage.

Development of the model, validation and covariates analysis

Model building was based on dataset A and guided by model adequacy criteria (log likelihood ratio test and Akaike information criteria) and internal validation based on simulation (and re-estimation); posterior predictive checks (PPCs) as suggested by Gelman et al. [5], and visual predictive checks and visual estimation checks as presented in [4].

External validation of the final model was based on dataset B and related to the evaluation of objective function values (OFVs), distributions of empirical Bayes estimates (EBEs), parameter values and posterior predictive checks (PPCs) as suggested by Gelman et al. [5].

Age, gender and BMI were explored within NONMEM through stepwise covariate modeling [6] on dataset A. Linear and piecewise linear additive effects were tested on each logit at each different nighttime break-point.

Results

- The final model presented the following specifications with respect to [3]: \(r \) equal to \(k \) in Eq. 1; significant correlations in sub-models AW, ST1 and ST2; time elapsed since the last change in sleep stage as a further predictor of the logits, through piecewise linear additive functions; parameters in sub-model AW estimated as different values between initial sleeplessness and rest of the night; reduced number of model parameters (four transition probabilities were fixed to zero and knots number in piecewise-linear functions was reduced to one).
- OFV reduction is shown in Table 1 (column 3). PPC on study A (Fig. 2) indicated a good agreement between simulated and observed efficacy endpoints in most cases.

Conclusions

- Previously proposed mixed-effect Markov-chain models for describing sleep architecture of insomniac patients treated with placebo [2, 3] were improved in terms of predictive performance and model parsimony.
- The final model was successfully validated with data from a new study.
- Age, gender and BMI were detected as influential covariates: their clinical relevance deserves further exploration in a wider population of insomniac subjects.

References

*E-mail: roberto.bizzotto@gmail.com