

Development and integration of the WinBUGS connector in the DDMoRe Interoperability Framework

Cristiana Larizza¹, Elisa Borella¹, Lorenzo Pasotti¹, Gareth Smith², Richard Kaye³, Paolo Magni¹

KWS bioinformatics mathematical modeling and synthetic biology

BUGS

¹Department of Electrical, Computer and Biomedical Engineering, Via Ferrata 5, Pavia 27100 (Italy), ²Cyprotex Discovery Ltd, 15 Beech Lane, Macclesfield, Cheshire SK10 2R (UK), ³Mango Solutions, 14 Greville St, London EC1N 8SB (UK) Primary contact: elisa.borella02@ateneopv.it

BACKGROUND AND OBJECTIVES.

The DDMoRe Interoperability Framework [1] is an integrated infrastructure to enable efficient exchange and integration of models across modelling languages and tools. This platform is built on the Pharmacometrics Markup Language (PharmML) [2], a tool-independent standard language for PK/PD model representation, designed to facilitate the translation and execution of user-specified models into target languages and tools. The objective of our work is to develop and test a connector integrating WinBUGS [3] in the DDMoRe Interoperability Framework. The connector allows the user to perform all the steps of a WinBUGS model execution: PharmML-to-WinBUGS model translation, WinBUGS run, generation and retrieval of the desired output.

DDMoRe Interoperability Framework: platform overview

New model-specifying languages

A «user language» (MDL) and a «computer language» (PharmML).

Environment for model retrieval, encoding and task execution

Users can implement complex and fully interoperable workflows via standardized model and output definitions.

The **DDMoRe model**

Development of a WinBUGS connector

Workflow example: Perform a Bayesian estimation task for a PK-PD model (Rocchetti et

al., 2013 [4]), available in the Model Repository (http://repository.ddmore.eu/model/DDMODEL0000008),

REFERENCES.

New tools:

- A Java-based tool for standardized output (SO) file creation was developed using lib-PharmML-SO [2]
- connector via different shell scripts responsible for: preparing inputs, invoking the tool, monitoring the progress of the processing and retrieving results

Single-subject and population

ODE models, solved via Pascal

code using PKPD Library and

WBDev, supporting multiple

Models with multiple DVs (NEW)

NONMEM dataset including: AMT,

Time-dependent categorical and

Dose administration in multiple

RATE, CMT, EVID, MDV, ID, DV,

continuous covariates (NEW)

Piecewise functions(NEW)

Correlation matrix (NEW)

Prior distributions (NEW)

Algebraic equations model

from execution.

Supported features:

models

dosing

DVID

compartments

Estimation task

WHAT'S NEXT?

- ODE solving via WBDiff and inline *ode block*
- PK macros
- Simulation task

[1] DDMoRe Interoperability Framework [http://www.ddmore.eu/product/interoperability-framework]

[2] Swat MJ et al. (2015). Pharmacometrics Markup Language (PharmML): Opening new perspectives for model exchange in drug development. CPT Pharmacometrics Syst. Pharmacol. 4, 316-319.

[3] Lunn DJ et al. (2000). WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing, 10:325-337. [4] Rocchetti M et al. (2013). Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth after administration of an anti-angiogenic agent, bevacizumab, as single-agent and combination therapy in tumor xenografts. Cancer Chemother Pharmacol. 71(5):1147-57. [5] Larizza C et al. (2015). Automatic translation of Bayesian pharmacometric models: the PharmML-to-WinBugs converter. PAGE 24 (2015) Abstr 3565 [www.page-meeting.org/?abstract=3565]

Between-occasion variability

Time to Event models

Count and categorical data