

Population design evaluation and optimization using PFIM 3.2:

application on pharmacokinetic/pharmacodynamic warfarin

Expected power and number of subjects needed for the

comparison Wald test

Caroline Bazzoli, Dubois Anne, Thu Thuy Nguyen, France Mentré

UMR 738 INSERM and University Paris Diderot, Paris, France.

Context

- Nonlinear mixed effect modeling or population analysis
- pharmacokinetic (PK) / pharmacodynamic (PD) data
- · Population analyses often based on limited sampling strategy
- ethical and / or financial reasons
- · Methodology developed to ensure informative population design
- based on the Fisher information matrix (M_E)
- expression of M_F using a first order Taylor expansion of the model [1]
- Implementation in a R function PFIM [2]
- R function for population design evaluation and optimization
- Extension of this methodology for multiple response models [3]
- for models with parameters quantifying influence of discrete covariates [4]
- for models including within-subject variability [5]
- → Implementation in a new version PFIM 3.2 (released in January 2010)

Objective

• To illustrate the use of PFIM 3.2 using an example on the PK and the PD of warfarin, an oral anticoagulant [6, 7]

Joint PK/PD model of warfarin

- PK: total racemic warfarin plasma concentration
 - single oral dose of 100 mg
 - one compartment model, first order absorption and elimination
 - exponential modeling of the random effects
- PD: effect on prothrombin complex activity (PCA)
 - turnover model with inhibition of the input
 - exponential modeling of the random effects

PK/PD design on Warfarin

- · Evaluation of the empirical design
 - one group of 32 subjects
 - 13 sampling times for PK and 7 sampling times for PD
- · Design optimization with the Federov-Wynn algorithm
 - 32 subjects with only 5 sampling times per subject
 - > common to both responses
 - sampling times from empirical design (PK + PD)

Figure 1. Empirical design versus optimal design

→ 2.1 less samples with optimal design than empirical design

Figure 2. Comparison of predicted RSE for fixed effects (%)

→ Relative standard errors (RSE) in the same range for the fixed effects

Pharmacogenetic on warfarin PK

- Single nucleotide polymorphism (SNP) CYP2C9
 - SNP on the gene of a cytochrome involved in the warfarin metabolism
 - influence of the genetic covariate on the clearance
 - clearance decrease of 50% for subjects with a mutant genotype
- Evaluation of the optimized PK/PD design with the effect of the genetic covariate on clearance
 - predicted power of the comparison Wald test (type I error=5%)
 - number of subjects needed (given power=90%)

	Covariate	riate Parameter Cate		Proportions of subjects in each category (%)	β
	CYP2C9	CL	Wild genotype (ref)	60	
			Mutant genotypes	40	log(0.5)=-0.69 or log(0.8)=-0.22

Figure 3 . PK/PD design evaluation output for $\beta = \log(0.5) = -0.69$

Table 2. Results on genetic covariate effect									
β	SE (RSE %)	95% CI(β)	exp(β)	95% CI(exp(β))	Expected power	Number of subjects needed			
-0.69	0.10 (15)	[-0.89; -0.49]	0.50	[0.41; 0.61]	1	8			
0.22	0.10 (43)	I 0 41: 0 021	0.80	10.66-0.071	0.63	64			

→ Increase of the number of subjects needed when the effect on the

Two-way crossover PK study on warfarin

- · Planification of a new study to assess the absence of interaction of drug X on warfarin ka
 - two-period, two-sequence balanced crossover trial
 - inter-occasion variability on ka: γ^2_{ka} =0.3 (CV=55%)
 - expected effect of the co-medication on ka: β=log(1)=0
- · Evaluation of the empirical PK design
 - 32 subjects
 - sampling times
 - 0.5, 1, 2, 3, 6, 9, 12, 24, 36, 48, 72, 96 and 120 hours
- Predicted power of the bioequivalence Wald test (type I error=5%)
- Number of subjects needed (given power=90%)

Figure 4. Empirical design evaluation output

→ To achieve a power of 90%, 116 subjects with the same sampling design would be needed to perform the bioequivalence test

Conclusion

- Illustration of the choice of the design and the number of subjects needed to achieve a given power of the Wald test of discrete covariate for complex
- Great potential of PFIM 3.2 to optimize parallel or crossover designs and to control expected power of a Wald test for comparison or bioequivalence
- PFIM 3.2 freely available at www.pfim.biostat.fr

Reference

- Mentré F, Mallet A, Baccar D. Biometrika. 1997... Retout S, Mentré F. Journal of Biopharmaceutical Statistics, 2003. Bazzoli C, Retout S and Mentré F. Statistics in Medicine. 2009. Retout S, Comets E, Samson A, Mentré F. Statistics in Medicine. 2007.
- Nguyen TT, Bazzoli C and Mentré F. American Conference on Pharmacometrics. 2009 (Poster). O'Reilly RA, Aggeler PM. Circulation. 1968.
- [7] O'Reilly RA, Aggeler PM, Leong LS. The Journal of Clinical Investigation. 1963.