

A strategy for residual error modeling incorporating both scedasticity of variance and distribution shape

Anne-Gaëlle Dosne, Ron J. Keizer, Martin Bergstrand, Mats O. Karlsson

Pharmacometrics Research Group Department of Pharmaceutical Biosciences Uppsala University Sweden

Traditional error modeling Models and assumptions

• Models

 $y = f(\theta, x, Z) + \varepsilon$

 $\varepsilon \sim N(0, var(\varepsilon))$

$var(\varepsilon)$
σ^2_{add}
$\sigma^2_{\text{prop}} \times f(\theta, x, Z)^2$
σ^2_{add} + $\sigma^2_{prop} \times f(\theta, x, Z)^2$

• Assumptions

Fixed residual – prediction relationship 2

UPPSALA UNIVERSITET

What to do if assumptions do not hold? Common answers, limitations, needs

Alternative strategies dTBS and Student's t-distribution

UPPSALA UNIVERSITET

Residual error modeling with dynamic Transform Both Sides (dTBS)

Dynamic Transform Both Sides Box-Cox transformation in NLMEM

$$h(y) = \begin{bmatrix} \lambda \neq 0 & \frac{y^{\lambda} - 1}{\lambda} \\ \lambda = 0 & \log(y) \end{bmatrix} \begin{bmatrix} \lambda = 1 & \text{normal} \\ \lambda = 0 & \log(y) \\ \lambda < 1 & \text{left skewed} \\ \lambda < 1 & \text{right skewed} \end{bmatrix}$$

In NLMEM $h(DV) = h(IPRED) + \varepsilon$

UNIVERSITET

Dynamic Transform Both Sides Likelihood calculation given the transformation

Likelihood of *untransformed* data– allows OFV comparison^{1,2}

$$p(y) = \int p(y|b)p(b)db$$

¹ Carroll & Ruppert. *Transformation and Weighting in Regression*. Chapman and Hall. 1998 ² Oberg & Davidian. *Estimating Data Transformations in Nonlinear Mixed Effects Models*. Biometrics. 2000

Dynamic Transform Both Sides Implementation in NONMEM

- **Dynamic** estimation of λ^1
- Additional files^{1,2}
 - data transformed during estimation
 - redefinition of likelihood

 ¹ Frame B. Within Subject Random Effect Transformations with NONMEM VI. Wolverine Pharmacometrics Corporation. 2009.
 ² Robert Bauer, adaptation courtesy for NM7

Dynamic Transform Both Sides Power term for dynamic heteroscedasticity

• **Power dTBS**:
$$\frac{DV^{\lambda}-1}{\lambda} = \frac{IPRED^{\lambda}-1}{\lambda} + IPRED^{\zeta} * \varepsilon$$

 $\varepsilon \sim N(0, \sigma^2)$

• Dynamic heteroscedasticity

• Parameterization:
$$\zeta = \lambda + \delta$$

Model	Equation	<i>sd</i> (ε) untransformed scale	sd (ε) transformed scale		
Power	$DV = IPRED + IPRED^{\zeta} * \varepsilon$	$\sigma \times IPRED^{\zeta}$	NA		
Box-Cox	$h(DV) = h(IPRED) + \varepsilon$	$\sigma \times IPRED^{1-\lambda}$	σ		
dTBS	$h(DV) = h(IPRED) + IPRED^{\zeta} * \varepsilon$	$\sigma \times IPRED^{1-\lambda+\zeta}$	$\sigma \times IPRED^{\zeta}$		

Dynamic Transform Both Sides Simulation : estimation of λ and δ

- Simulation additive, proportional and exponential error models
- Estimation dTBS + true model

Dynamic Transform Both Sides

Simulation : satisfactory estimation of model parameters

UPPSALA UNIVERSITET

Dynamic Transform Both Sides Real data examples

Compound	Data	Model	RV model	Fixed transfo.	Obs.
ACTH & Cortisol	PD	turnover	combined	_	364
Cladribine	PK	IV 3 CMT	combined	_	488
Cyclophosphamide & metabolite	PK	4 CMT, CL induction	combined	-	383
Ethambutol	PK	2 CMT, transit	combined	-	1869
Moxonidine	PK	Oral 1 CMT	additive	Log	1021
Moxonidine	PD	E _{max}	additive	Log	1364
Paclitaxel	PD	Neutrophil	additive	Box-Cox	530
Pefloxacin	PK	IV 1 CMT	proportional	-	337
Phenobarbital	PK	IV 1 CMT	proportional	-	155
Prazosin	PK	Oral 1 CMT	proportional	_	887

Dynamic Transform Both Sides Real data examples: dTBS estimates & OFV drop

UPPSALA UNIVERSITET

- 100% dOFV > 5.99
- Mean drop -60

Dynamic Transform Both Sides Moxonidine PK example: data and model

- Data: rich
 - 74 patients, 1021 observations
 - 3 possible doses, 2 occasions

- Model:
 - Additive error on log-transformed data
 - 1 CMT, first-order absorption, lag time

Dynamic Transform Both Sides

UPPSALA UNIVERSITET

Moxonidine example: OFV and parameter estimates

Parameter	Fixe Value	d log RSE(%)	dTBS Value RSE(%)			
OFV	-2173	-	-2416	-		
dOFV	0	-	- 243	-		
λ (-)	0	-	1.5	6.3		
ζ(-)	0	-	1.6	-		
Δ (ζ-λ)	0	-	0.1	39		
CL (L.h ⁻¹)	27	1.2	26	3.4		
V (L)	110	2.6	108	3.3		
KA (h ⁻¹)	4.5	9	4.9	18		
LAG (h)	0.24	1.3	0.23	2.3		
RV (na)	0.33	1.3	0.25	4.1		
IIV CL (%)	27	10	25	11		
Cor IIV CL-V (-)	0.74	-	0.70	-		
IIV V (%)	24	13	24	10		
IIV KA (%)	168	12	136	14		
IOV CL (%)	12	18	17	11		
IOV KA (%)	71	18	88	16		

 Important OFV drop

- λ ≈ ζ ≈ 1.5: left skewness
- Parameter estimates changed (RV on different scales)

Dynamic Transform Both Sides Moxonidine example: IWRES distribution

16

UPPSALA UNIVERSITET

Dynamic Transform Both Sides Moxonidine example: prediction properties

- Narrower Cl
 with dTBS
- E.g. highest upper bound of Cl₉₅ 95th perc. =
 2 vs 1.6 (log vs dTBS)
- more precise predictions

UPPSALA UNIVERSITET

Residual error modeling with Student's t-distribution

Student's t-distribution Function characteristics

- Parameter: degrees of freedom v (df)
- Symmetric around 0, heavy-tailed
- Variance = $\frac{\nu}{\nu 2}$ > 1 for ν > 2
- Approaches normal distribution when $\nu \rightarrow \infty$

Student's t-distribution Implementation: redefinition of likelihood

- Estimation
- Likelihood based on pdf of t-distribution¹

$$p(\boldsymbol{y}|\boldsymbol{\nu},\boldsymbol{\sigma},\boldsymbol{\mu}) = \frac{\Gamma(\frac{\boldsymbol{\nu}+1}{2})}{\Gamma(\frac{\boldsymbol{\nu}}{2})\sqrt{\boldsymbol{\pi}\boldsymbol{\nu}\boldsymbol{\sigma}^{2}}} \left(1 + \frac{1}{\boldsymbol{\nu}}\frac{(\boldsymbol{x}-\boldsymbol{\mu})^{2}}{\boldsymbol{\sigma}^{2}}\right)^{-\frac{\boldsymbol{\nu}+1}{2}}$$

- Function Γ: Nemes approximation²
- $\nu \ge 3$: stability and full distribution definition

Student's t-distribution Real data examples

Compound	Data	Model	RV model	Fixed transfo.	Obs.
Moxonidine	PK	Oral 1 CMT	additive	Log	1021
Pefloxacin	PK	IV 1 CMT	proportional		337
Phenobarbital	PK	IV 1 CMT	proportional	-	155
Prazosin	PK	Oral 1 CMT	proportional	_	887

Compound	dOFV	ν
Moxonidine	- 400	3
Pefloxacin	- 16	4.7
Phenobarbital	0	×
Prazosin	- 169	3

Student's t-distribution

Moxonidine example: OFV and parameter estimates

Parameter	Normal	t-distribution
OFV	1221	820
dOFV	0	- 400
DF	∞	3
CL (L.h ⁻¹)	26	26
V (L)	107	102
KA (h ⁻¹)	5.4	4.7
LAG (h)	0.24	0.24
RV (na)	0.33	0.17
IIV CL (%)	27%	28%
Cor IIV CL-V (-)	0.74	0.77
IIV V (%)	24%	23%
IIV KA (%)	162%	150%
IOV CL (%)	12%	12%
IOV KA (%)	63%	20%

- Important OFV drop
- DF at lower boundary
- Variance = 3
- Changes in absorption
 parameters

Student's t-distribution Moxonidine PK: Residual distribution

 Better agreement between experimental and theoretical IWRES distribution for t-distribution

Student's t-distribution Moxonidine example: Individual fits

 Better global fit by allowing some predictions to be further away from observations

Conclusion

UPPSALA UNIVERSITET

New possibilities for residual error modeling

- Could be used jointly
- Can improve quality of parameter estimates and predictions

Acknowledgements

The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° 115156, resources of which are composed of financial contributions from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution. The DDMoRe project is also supported by financial contribution from Academic and SME partners. This work does not necessarily represent the view of all DDMoRe partners.

- Uppsala Pharmacometrics Research Group
- Novartis for financial support

Additional slides

- dTBS ccontra and contr files
- dTBS model file code
- dTBS simulation code
- *t-distribution simulation code*
- Type I error investigation for dTBS and tdistribution

!

Dynamic Transform Both Sides

ccontra and contr files

ccontra

```
subroutine ccontr (icall,c1,c2,c3,ier1,ier2)
                       ONLY: theta=>THETAC,y=>DV ITM2
      USE ROCM REAL,
      USE NM INTERFACE, ONLY: CELS
       parameter (lth=40,lvr=30,no=50)
       common /rocm0/ theta (lth)
!
!
       common /rocm4/ y
       double precision c1,c2,c3,theta,y,w,one,two
!
      double precision c1,c2,c3,w,one,two
      dimension c2(:), c3(:,:)
      data one,two/1.,2./
      if (icall.le.1) return
      w=y(1)
                                           DV transformation
      if(theta(7).eq.0) y(1)=log(y(1))
      if(theta(7).ne.0) y(1)=(y(1)**theta(7)-one)/theta(7)
      call cels (c1,c2,c3,ier1,ier2)
     y(1)=w
                                          Redefinition of log-
      cl=cl-two*(theta(7)-one)*log(y(1))
                                              likelihood
      return
      end
```

contr

subroutine contr	
(icall,cnt,ier1,ier2)	
double precision cnt	
call ncontr	
(cnt,ier1,ier2,l2r)	
return	
end	

UPPSALA UNIVERSITET

Dynamic Transform Both Sides Model file example: Modification of \$ERROR

	\$ ERROR	IRES = IPRED-DV
Power RUV	IPR1 = A(2)/V IF(IPR1.LE.0) IPR1 = 0.001	IWRTR=IWRES Transform. of IWRES
	LAMBDA = THETA(7) ZETA = LAMBDA + THETA(6)	IF (LAMBDA.NE.0 .AND. DV.NE.0 .AND. W.NE.0) THEN IWRTR=((DV**LAMBDA-1)/LAMBDA-IPRED)/W
Transform. of IPRED	W = THETA(5)*IPR1**ZETA IPRED = IPR1	ENDIF IF (LAMBDA.EQ.0 .AND. DV.NE.0 .AND. W.NE.0) THEN IWRTR=(LOG(DV)-IPRED)/W
	<pre>IPRTR=IPRED IF (LAMBDA .NE. 0 .AND. IPRED .NE.0) THEN IPRTR=(IPRED**LAMBDA-1)/LAMBDA ENDIF IF (LAMBDA .EQ. 0 .AND. IPRED .NE.0) THEN IPRTR=LOG(IPRED) ENDIF IF (LAMBDA .NE. 0 .AND. IPRED .EQ.0) THEN IPRTR=-1/LAMBDA ENDIF IF (LAMBDA .EQ. 0 .AND. IPRED .EQ.0) THEN IPRTR=-100000000 ENDIF IPRED=IPRTR</pre>	<pre>IWRIR=(LOG(DV)-IPRED)/W ENDIF IF (LAMBDA.NE.0 .AND. DV.EQ.0 .AND. W.NE.0) THEN IWRTR=(-1/LAMBDA-IPRED)/W ENDIF IF (LAMBDA.EQ.0 .AND. DV.EQ.0 .AND. W.NE.0) THEN IWRTR=(-100000000-IPRED)/W ENDIF IWRES=IWRTR Y=IPRED+EPS(1)*W</pre>

Dynamic Transform Both Sides Model file : other changes and simulation code

\$SUBROUT	INE ADVAN2	TRANS1 C	ONTR=contr.txt	$CCONTR=ccontra_nm7.txt$
				Additional files needed
\$THETA	0.0001		;DELTA_ZETA	
\$THETA	1		;LAMBDA	

\$ESTIMATION METHOD=1 INTER MAXEVALS=9999

dTBS SIMULATION ON UNTRANSFORMED SCALE

IF (ICALL.EQ.4 .AND. LAMBDA.EQ.0) THEN
Y=EXP(Y)
ENDIF
IF (ICALL.EQ.4 .AND. LAMBDA.NE.0) THEN
Y=((Y*LAMBDA)+1)**(1/LAMBDA)
ENDIF

Student's t-distribution Model file example

\$ERROR

DF	= THETA(5)	;	degrees	of	free	edom	of	Studer	t distribu	utic	on
W = TH	HETA(4)*IPRED										
SIG1	= W	;	scaling	fac	ctor	for	sta	andard	deviation	of	RUV
IWRES=	=(DV-IPRED)/SIG1										

PHI=(DF+1)/2 ; Approximation of gamma function INN=PHI+1/(12*PHI-1/(10*PHI)) GAMMA=SQRT(2*3.14159265/PHI)*(INN/EXP(1))**PHI

```
PHI2=DF/2 ; Approximation of gamma function
INN2=PHI2+1/(12*PHI2-1/(10*PHI2))
GAMMA2=SQRT(2*3.14159265/PHI2)*(INN2/EXP(1))**PHI2
```

```
COEFF=GAMMA/(GAMMA2*SQRT(DF*3.14159265))/SIG1
BASE=1+IWRES*IWRES/DF
IF(BASE.EQ.0) BASE=0.000001
POW=-(DF+1)/2
L=COEFF*BASE**POW
Y=-2*LOG(L)
```

\$EST MAXEVAL=9999 -2LL METH=1 LAPLACE

Simulation code example

\$ERROR

IPRED = ((DOSE/V)*(KA/C))*(A-B)

W = THETA(4)*IPRED IWRES=(DV-IPRED)/W DF = THETA(5)

```
IF (ICALL.EQ.4)
Y = IPRED +
W*EPS(1)*(1+((EPS(1)**2+1)/(4*DF))+((5*EPS(1)**4+16*EPS(1)**2+3)/(96*DF**
2))+((3*EPS(1)**6+19*EPS(1)**4+17*EPS(1)**2-15)/(384*DF**3)))
```

\$SIGMA 1FIX

Dynamic Transform Both Sides Type I error rate not increased

Student's t-distribution Type I error rate not increased

