A drug-independent model predicting Progression-Free Survival to support early drug development Lyon ' in recurrent ovarian cancer patients **EMR 3738 UNIV.LYONI**

Mélanie Wilbaux¹, Emilie Henin¹, Olivier Colomban¹, Amit Oza², Eric Pujade-Lauraine³, Gilles Freyer^{1,4}, Benoit You^{1,4}, Michel Tod¹

¹ EMR 3738 Ciblage Thérapeutique en Oncologie, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Université Claude Bernard Lyon 1, Oullins, France.² Department of Medical Oncology and Hematology, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada. ³ Hôpital Hôtel Dieu, Place du Parvis Notre-Dame, Paris, France. ⁴ Service d'Oncologie Médicale, Investigational Center for Treatments in Oncology and Hematology of Lyon, Centre Hospitalier Lyon-Sud, HCL, Pierre-Bénite, France

Background

> Drug development in oncology:

- high failure rate in phase III (approx 60% [1])
- \rightarrow Need for early predictor of clinical benefits to select promising drug candidates
- Early change in tumor size: predictor of survival in a number of solid tumors [2,3,4]

> Ovarian cancer :

Patients & Methods

> Patients:

- **534 ROC patients** from **CALYPSO** trial: phase III comparing 2 platinum-based regimens
- 2/3 of database (N=356): Learning dataset → Model building
- 1/3 of database (N=178): Validation dataset \rightarrow External validation

> Methods (approach similar to Claret et al. [4]):

- Highest mortality rate among all invasive gynecologic cancers
- CA-125: serum tumor marker of epithelial ovarian cancer
- Treatment efficacy: RECIST criteria + GCIG criteria (CA-125) response: at least 50% reduction)

Objectives

- To establish the quantitative relationships between CA-125 kinetics, tumor dynamics and progression-free survival (PFS) in patients with recurrent ovarian (ROC) cancer treated with chemotherapy
- To compare the predictive capacities of tumor size changes versus CA-125 kinetics regarding PFS

- **1) Screening for significant covariates**: Kaplan-Meier & univariate Cox analysis
- Development of a **full parametric survival model:** 2)
- Structure of PFS distribution
- Quantitative link between tumor size changes, CA-125 kinetics, covariates and PFS
- 3) **Reduction** of the full model in 2 separate models:
- Tumor size-based model vs CA-125-based model
- Comparison of their predictive capacities regarding PFS (AIC)
- Internal & external evaluation of the best reduced model (VPC) 4)

Results

Relative change in tumor size and CA-125 assessment $\Delta TS = \frac{TS_{BL} - TS_{Week6}}{TS}$ $\Delta CA125 = \frac{CA125_{BL} - CA125_{Week6}}{CA125_{BL}}$ TS_{RI}

 TS_{BL} and $CA125_{BL}$: tumor size and CA-125 at baseline

- TS_{Week6} and $CA125_{Week6}$: tumor size and CA-125 at week 6

Validation of the CA-125-based model

Internal validation from 500 simulations of the Learning dataset

External validation from 500 simulations of the Validation dataset

Values estimated using a previously reported K-PD semi-mechanistic model [5]. TS: log transformed. CA-125: Box-Cox transformed. *Full parametric survival model*

PFS best described by a log-logistic distribution:

 $\log(T) = \alpha_0 + \sigma \times \log\left(\frac{1 - S(T)}{S(T)}\right) + \alpha_{\Delta TS} \times \Delta TS + \alpha_{\Delta CA125} \times \Delta CA125 + \alpha_{CA125_{BL}} \times CA125_{BL} + \alpha_{PTFI} \times PTFI$

T: time to progression; α_0 : intercept; $\frac{1-S(T)}{S(T)}$: log-logistic survival odds; α_X : slope for covariate X; *PTFI*: patient therapy-free interval (≤ 12 months vs >12 months)

Comparison of the predictive values of tumor size versus CA-125 changes regarding PFS

Model	AIC	Time Ratio ∆TS	Time Ratio ∆CA125	Time Ratio CA125 _{BL}
		(1-unit change)	(1-unit change)	(1-unit change)
Tumor size-based model	4213	1.79	/	/
CA-125-based model	4206	/	2.08	0.88

CA-125-based model is the most suitable reduced model describing PFS.

> **RSE (%) Estimate** Wald p-value Parameter Time Ratio

Model practical applications

\succ Prediction of the expected PFS based on patient $\Delta CA125$

						2 – Not treated 356 / 174 [105 - 243] /				
Parameter estimates of the CA-125- based model	Intercept	6.093	2.8	/	< 0.001	0 200 400 600 800 1000				
	$\alpha_{CA125_{BL}}$	- 0.128	37.0	0.88	0.006	Time since treatment (days)				
	$lpha_{\Delta CA125}$	0.735	33.4	2.08	0.002	$>$ ROC patients should achieve at least 55% Δ CA125 decli				
	Scale	0.256	1.2	/	/	to observe a 50% PFS improvement				
Conclusions										
First drug-independent parametric survival model quantifying links between PFS and CA-125 kinetics in ROC patients										
Modeled relative change in CA-125 at week 6: a promising predictive marker of the expected gain in PFS										
Early predictive tool for go/no go drug development decisions										
References										

[1] Kola et al, Nat Rev Drug Discov, 2004. [2] Claret et al, J Clin Oncol, 2006. [3] Wang et al, Clin Pharmacol Ther, 2009. [4] Claret et al, J Clin Oncol, 2009. [5] Wilbaux et al, PAGE, 2012.