

Joint modeling of moxifloxacin pharmacokinetics and fecal microbiota disruption in healthy volunteers

Charles Burdet^{1,2}, Thu Thuy Nguyen¹, Jean de Gunzburg³, Stéphanie Ferreira⁴, Annie Ducher³, Xavier Duval^{1,2}, Marina Varastet³, Antoine Andremont^{1,2}, France Mentré^{1,2}

> ¹INSERM, IAME, UMR 1137, F-75018 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France ² AP-HP, Bichat Hospital, Paris, France; ³ Da Volterra, Paris, France; ⁴ Genoscreen, Lille, France

Introduction

- Metagenomic analysis provides a detailed picture of the intestinal microbiota. Antibiotic administration has a major disrupting impact [1].
- We developed a joint model of plasma and free fecal concentration of moxifloxacin (ffMXF), a fluoroquinolone antibiotic, after oral administration in humans, and their impact on fecal microbiota.

Methods

Data

• 14 healthy volunteers (HVs) treated by 400 mg MXF OAD for 5 days & 8 control HVs not treated included in a clinical trial (sponsor Da Volterra, PIX. Duval). Multiple plasma and fecal sampling for ffMXF measurement and microbiota analysis (Fig 1 & 2).

Results

- In the best model, ffMXF increased the elimination of the number of OTUs by via an E_{max} model (Fig 3).
- Goodness of fit of the model were satisfactory. Individual fits of ffMXF and number of OTUs presented in Fig 4.

Figure 3: Compartmental model obtained for plasma and fecal MXF PK (red) and for bacterial diversity (orange). Compartments are a, transit, Aa, absorption, Ac, central, Ap, peripheral, At1 & At2, transit, Af, fecal

k₂₁ k₁₂

Ap

Figure 1: Design of the trial.

ffMXF measured by bioassay, metagenomic analysis by sequencing of the V3-V4 16S rDNA region (Genoscreen, Lille, France). Bacterial α diversity estimated using the number of different Operational Taxonomic Units (OTUs) in each sample.

<u>Figure 2:</u> Plasma (left) and fecal (right) ffMXF (red), and number of OTUs (bottom, orange) in MXF-treated (plain lines) and control (dashed lines) HVs; Blue arrows represent MXF administration.

Parameter	Estimate (rse%)	Inter-individual variability (rse)
Mtt (d)	0.0144 (30)	0.917 (24)
k _{tr} (d⁻¹)	152 (57)	1.74 (26)
k _a (d⁻¹)	136 (65)	1.81 (28)
V (L)	101 (5)	0.164 (24)
k (d-1)	1.58 (4)	0.133 (24)
k ₁₂ (d ⁻¹)	0.118 (18)	0 (fixed)
k ₂₁ (d ⁻¹)	0.967 (1)	0 (fixed)
k _{cb} (d ⁻¹)	0.217 (13)	0.224 (52)
k _{fc} (d⁻¹)	0.319 (36)	0.63 (41)
k _t (d⁻¹)	3.17 (16)	0.472 (26)
k _f (d⁻¹)	1.47 (16)	0.447 (25)
P _f (g)	200 (fixed)	0 (fixed)
g _s	5.03 (16)	0 (fixed)
k _s (OTU.d⁻¹)	0.0305 (17)	0.188 (17)
E _{max}	7.77 (35)	0.392 (65)
EC ₅₀ (μg/g)	127 (74)	1.05 (42)

Residual error	Estimate (rse%)
$\sigma_{\text{slope plasma}}$	0.217 (4)
$\sigma_{\text{inter fecal}}(\mu g/g)$	0.0495 (37)
$\sigma_{slope fecal}$	0.492 (8)
σ_{inter_OTUs}	23.4 (9)

Table 1: Estimated population parameters and relative standard errors (rse) in the final joint model.

Figure 4: Top : individual fits of ffMXF (red). Bottom: number of OTUs (orange) in MXF-treated HVs, and spaghetti plot (dotted black line) and population prediction (plain line) in control HVs.

Modelling

- 2-step analysis: first joint plasma and fecal PK modelling in MXF-treated subjects (Fig 3), then PKPD modelling using all subjects.
- Turn-over models tested to model the impact of ffMXF on bacterial diversity [2].
- Parameter estimation performed using non-linear mixed-effects modelling with SAEM algorithm in the Monolix software.

Conclusion

- First PKPD model that joins the plasma and fecal PK profiles of an antibiotic to its deleterious effects on the intestinal microbiota.
- MXF is still detectable in feces 10 days after the end of treatment, with highly variable impact on number of OTUs. Return to pre-treatment state is incomplete 30 days after the end of treatment.
- The characterization of other indices of microbiota disruption by MXF is ongoing.

References

