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Conclusions

•Models with Markovian elements where the estimated parameters are rate
constants describing the flow of probability over time [1,2,3] are a fairly new way of
modeling categorical data with high correlation between consecutive observations.
•These models generally require fewer parameters than ordinary Markov models
and do not assume equally spaced observations; there is also less need to know
the exact time of transition, i.e. to have observations on all time points.
•When modeling ordered categorical or repeated time to event data and the
number of observations is low in one category or only a few individuals have
multiple events the LAPLACE method in NONMEM has been prone to bias [4].
•The objective was therefore to assess bias for continuous time Markov models and
assess the type I error rate.

The smaller EPS model (Fig1a) was used to assess the influence of sparse
data in 2 scenarios. The typical parameters were changed from estimated
values to simulate the two main scenarios 1&2, then the impact of variability
was tested by varying inter-individual variability. (Table I) The setups were :
1) Simulate a skewed distribution of occurrences of events; down to ~1-2

% individuals having an event of the least occurring category; (Moderate
/Severe EPS).

2) Simulate different number of individuals with any transitions and
individuals with more than one transition. In the most sparse simulations
not more than ~10 individuals were having more than one transition
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Two models of the continuous time type Markov model for categorical data
formed the basis for the evaluation. The first model, which described EPS
events of antipsychotic drugs, had only one parameter for inter-individual
variability (IIV) [3] while six IIV parameters were included in the second
model characterizing ACR response [1].
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EFF=THETA(6)*AUC
K21=THETA(1)*EXP(-THETA(4)*TIME)*EXP(ETA(1))*(1+EFF)
K12=THETA(2)*EXP(-THETA(5)*TIME)*EXP(ETA(1))
K32=THETA(2)*EXP(-THETA(4)*TIME)*EXP(ETA(1))*(1+EFF)
K23=THETA(3)*EXP(-THETA(5)*TIME)*EXP(ETA(1))

Table I. EPS data [3] Number of individuals in the most sparse category, number of 
individuals that have at least one transition and number of individuals with more than one 
transition. Observed is from the real data as reference values. Ntot =1187
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Figure I. Model structure and code excerpt for EPS model (a) and the ACR model (b)
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Figure 2. Bias of parameters in EPS model; a: scenario 1, b: scenario 2.

For the bigger ACR model (Nind = 938)(Fig 1b), the impact of data density
on parameter bias was evaluated with parameters obtained from real
data. The least supported parameter (K23) had 0.6 % of the data being
informative on that parameter.
One-hundred simulations and re-estimations were performed to assess
the bias using PsN and the LAPLACIAN estimation method in NONMEM
7. Type I error were assessed by simulation and re-estimation including a
false covariate. One-thousand samples were used for this purpose.

TVK10=THETA(1)*(1+THETA(8)*TIME)
EMX10=THETA(11)*CP/(THETA(12)+ CP)
K10=TVK10*(1+EMX10))*EXP(ETA(1)

TVK01=THETA(2)*(1+THETA(9)*TIME)
EMX01=THETA(15)* CP /(THETA(12)+ CP)
K01=TVK01*(1+EMX01))*EXP(ETA(2)

TVK21=THETA(3)*(1+THETA(9)*TIME)
K21=TVK21*(1+THETA(13)* CP))*EXP(ETA(3)

TVK12=THETA(4)*(1+THETA(9)*TIME)
EMX12=THETA(15)* CP /(THETA(12)+ CP)
K12=TVK12*(1+EMX12))*EXP(ETA(4)

TVK32=THETA(5)*(1+THETA(9)*TIME)
K32=TVK32*(1+THETA(13)*CP))*EXP(ETA(5)

TVK23=THETA(6)*(1+THETA(9)*TIME)
EMX23=THETA(15)* CP /(THETA(12)+ CP)
K23=TVK23*(1+EMX23))*EXP(ETA(6)
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Figure 3. Bias of parameters in ACR model; separated for parameter type. For main 
parameters (rate constants) and OMEGAs the observed proportion of the individuals having a 
transition of this type is shown.

The ACR model parameter showed similar relationship between data
sparseness and bias. The most biased parameters, K01 and K23, had a
bias of 85 and 170 % and were the least supported (1.2 and 0.6 % of
individuals having this transition). This finding was also true for IIV
estimates (Fig. 3).
Type I error rates were slightly elevated, ΔOFV was 6.7 for 5% error rate
and appoximately 10 for 1% error rate.
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Bias was seen for continuous type Markov models and seems to be more
sensitive to skewed data distributions than low number of transitions.
Increasing the variability and thus the number of individuals in the most
sparse category and overall number of transitions decreased bias as more
information was available with more transitions.
The knowledge of slightly elevated Type I error rates will be used in further
model development
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OMEGA

Observed Scenario 0 0.25 1 4 16

Nsparse(%) 46
1 19 (1.6) 21 (1.7) 29 (2.4) 50 (4.2) 80 (6.7)
2 27 (2.2) 32 (2.6) 87 (7.2) 117 (9.8) 270 (22.7)

Ntransition(%) 180
1 219 (18.5) 238 (20.0) 298 (25.1) 473 (39.9) 738 (62.2)
2 72 (6.0) 84 (7.1) 121 (10.2) 312 (26.3) 786 (66.2)

N1+ transitions (%) 17
1 10 (0.8) 13 (1.0) 24 (2.0) 67 (5.6) 145 (12.2)

2 11 (1.0) 16 (1.3) 30 (2.5) 94 (7.9) 229 (19.3)

For the EPS model, the highest absolute bias (mean 40%) was seen when
the number of individuals in category 3 was low. The mean bias was up to
20% when the number of transitions was low. Bias was highest in IIV
estimates and rate constants associated with the most sparse observation
type (K23). Bias decreased with increased IIV (Fig. 2) Low IIV or omission
of IIV in the model would occasionally yield datasets with very few or no
observations in the most sparse category, as a result one or more
population parameters were then not estimable.
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