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Optimized  Support Set Inherits Misleading Correlation from
 Initial Candidate POSTHOC Supports

Introduction

The use of FO or FOCE POSTHOC eta values is a 
commonly used approach for exploratory data 
analysis of possible covariate relationships (e.g., 
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analysis of possible covariate relationships (e.g., 
regressing post hoc estimates of a clearance or 
volume of distribution against weight or against 
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evolume of distribution against weight or against 

other POSTHOCs) and distributional 
features. However, as shown in [R. Savic and M. 
Karlsson, PAGE 2007, abst. 1087], shrinkage 
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Karlsson, PAGE 2007, abst. 1087], shrinkage 
effects in the sparse data case may hide or 
distort an actual dependence or correlation, 
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possibly rendering such analyses ineffective or 
even misleading. Recently NONMEM® VI has 
added a relatively simple nonparametric 

Fig. 2. An FOCE fit to a simple IV bolus Ke
sparse (2 sample times) data  (Nsub = 400) simulated from 

-0.8 -0.6 -0.4 -0.2
-0.6

added a relatively simple nonparametric 
capability NONP in which the nonparametric 
maximum likelihood (NPML) distribution is 
approximated by a discrete distribution with 

sparse (2 sample times) data  (Nsub = 400) simulated from 

a true multivariate normal random effects distribution with 

diagonal Ω Ω Ω Ω shows highly correlated  (

etaKe and etaV values, even thought the true underlying 
approximated by a discrete distribution with 
support points fixed at the POSTHOC estimates 
from a preliminary parametric FO or FOCE 

eta values are  independent.  An NONP analysis using the 

excessively correlated POSTHOCS as the candidate 

supports selects final supports on the periphery and 

reduces the apparent POSTHOC correlation  using NP 
from a preliminary parametric FO or FOCE 
analysis.  NPML optimization is performed only 
over the associated probabilities on the support 
points. Due to shrinkage and/or excessive 

reduces the apparent POSTHOC correlation  using NP 

individual posterior distribution means) to 
overall  the high correlation of the initial candidate 

supports cannot be overcome by the nonparametric 

analysis.  In contrast, in the full nonparametric analysis 
points. Due to shrinkage and/or excessive 
POSTHOC correlations,  the fixed  POSTHOC 
supports may be badly placed relative to the 
supports in a NPML distribution that has also 

analysis.  In contrast, in the full nonparametric analysis 
with optimized supports shown above right in Fig. 3, the 

correlation of the NP individual posterior means is

supports in a NPML distribution that has also 
been optimized with respect to support point 
positions.  Here we consider the use of the mean Computation of NP “POSTHOC”  

Individual Posterior Means
positions.  Here we consider the use of the mean 
of the individual nonparametric posterior 
distributions as a nonparametric analogue to 
parametric POSTHOCs in exploratory data 

Individual Posterior Means
For a given set of M candidate support points, 
the NPML distribution P with N subjects is parametric POSTHOCs in exploratory data 

analysis, using both NONP as well as full NPML 
optimization.

the NPML distribution P with N subjects is 
discrete on at most N support points and can 
be found as the solution to 

Parametric POSTHOCS can be poor 

Maximize NPML(P), where

N M

∑ ∑
Parametric POSTHOCS can be poor 
nonparametric candidate supports
Fig  1A shows the true observed bimodal distribution for 700 
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Fig  1A shows the true observed bimodal distribution for 700 

subjects  (ETA_Ke ~ 1/2 N(-0.41, 0.0625) + ½ N(0.41, 00625), 

eta_V~N(0, 0.0625), Ke = exp(eta_Ke), V=exp(eta_V), from a 

simulated linear one-compartment IV bolus NLME model 

L are fixed conditional likelihoods determined 
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DV = dose*exp(-Ke*time)/V *exp(eps) , eps= 0.1 

while Fig 1B shows the distribution of the post hoc estimates of 
eta_Ke after an FOCE fit using a normality assumption for the 
random effects . Note that the bimodality in eta_Ke  has been 

LIJ are fixed conditional likelihoods determined 
by  evaluating the residual error model at all 
support point SJ for subject I.

random effects . Note that the bimodality in eta_Ke  has been 

completely masked by the shrinkage phenomenon. Fig 1C shows 
the bimodal but still too narrow distribution of the means of the 
individual subject posterior distributions from an NP fit with 

This is a convex optimization problem that can 
be rapidly and reliably solved, even with very individual subject posterior distributions from an NP fit with 

parametric FOCE post hoc supports, while Fig 1D shows the 

wider corresponding distribution of the individual posterior 
means for a fully optimized NP fit . The nonparametric 2LL value 
for D is higher than for C by 24.506.  

be rapidly and reliably solved, even with very 
large candidate support sets, with a central 
path following primal-dual algorithm.  The 
solution consists of at most N (# subjects) for D is higher than for C by 24.506.  

Fig. 1

solution consists of at most N (# subjects) 
support points with PJ

points associated with P

If the starting set of candidate support points is 
very rich, (e.g. a high resolution grid over the 
random effects space), a single application of 40
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random effects space), a single application of 
the primal dual algorithm is sufficient to obtain 
a near global optimum over both probabilities 
and support point positions (see fig. 3 above 
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and support point positions (see fig. 3 above 
right).  Alternatively, a sequential approach of 
solving on successively refined sparser grids 
can be used. 
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can be used. 

In addition to the population distribution, an NP 
posterior distribution P
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posterior distribution P
supports for each subject I is obtained by using 
the I-th row of L to compute a Bayesian 
posterior with  P as a prior.  The mean of P
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posterior with  PJ as a prior.  The mean of P
is  analogous to the parametric POSTHOC 
values for subject I and can be used similarly 
for exploratory data analysis.  It can be more 
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for exploratory data analysis.  It can be more 
resilient to distortions caused by shrinkage and 
other phenomena in the
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initial posthoc candidate supports
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Fig. 2. An FOCE fit to a simple IV bolus Ke-V  model with 
sparse (2 sample times) data  (Nsub = 400) simulated from 

Fig. 3. In contrast to the situation in Fig. 2 (left), a fully 
optimized nonparametric analysis (above) using an initial 
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sparse (2 sample times) data  (Nsub = 400) simulated from 

a true multivariate normal random effects distribution with 

shows highly correlated  (ρ ρ ρ ρ = 0.91) POSTHOC 

etaKe and etaV values, even thought the true underlying 

optimized nonparametric analysis (above) using an initial 

dense grid of quasi-random Sobol sequence support points 

selects optimal supports well outside the narrow band of 

correlated POSTHOC values.  The corresponding correlation 
eta values are  independent.  An NONP analysis using the 

excessively correlated POSTHOCS as the candidate 

supports selects final supports on the periphery and 

reduces the apparent POSTHOC correlation  using NP 

correlated POSTHOC values.  The corresponding correlation 
of the NP individual distribution means is reduced to ρρρρ = 0.11

0.5
Apparent Ke-Weight Correlation from POSTHOCS

1
Apparent Ke-Weight Correlation from Nonparametric POSTHOC Means

reduces the apparent POSTHOC correlation  using NP 

individual posterior distribution means) to ρ ρ ρ ρ = 0.85, but 
overall  the high correlation of the initial candidate 

supports cannot be overcome by the nonparametric 

analysis.  In contrast, in the full nonparametric analysis 
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analysis.  In contrast, in the full nonparametric analysis 
shown above right in Fig. 3, the 

correlation of the NP individual posterior means is ρ ρ ρ ρ = 0.11.
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Individual Posterior Means
For a given set of M candidate support points, 
the NPML distribution P with N subjects is 

Fig.4.  In a second similar simulation, a covariate relationship 

between V  (but not Ke) and weight is introduced into the 
simulated data set, with etaV and etaKe remaining independent.  

weight

the NPML distribution P with N subjects is 
discrete on at most N support points and can 
be found as the solution to 

simulated data set, with etaV and etaKe remaining independent.  

The FOCE analysis with a base model continues to show a  
strong  (ρ ρ ρ ρ > 0.9) correlation between the POSTHOCS for etaV and 

etaKe.  The ρ ρ ρ ρ = 0.55 etaV-weight correlation is correctly identified 

by a POSTHOC plot (not shown) but a second spurious ρ ρ ρ ρ = 0.48  

Maximize NPML(P), where

N M

∑ ∑

by a POSTHOC plot (not shown) but a second spurious ρ ρ ρ ρ = 0.48  
etaKe-weight correlation is induced (Fig. 4A).  In Fig. 4B, the 

spurious correlation is essentially removed (ρ(ρ(ρ(ρ =0.11) by a full 
NPML  analysis (but not by NONP optimization over POSTHOCS).
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Conclusions (sparse data case)

1) Strong (ρ ρ ρ ρ > 0.9) correlations may be observed 

are fixed conditional likelihoods determined 
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1) Strong (ρ ρ ρ ρ > 0.9) correlations may be observed 

between POSTHOC values when the true underlying 
random effects are uncorrelated, making the 
POSTHOCs ineffective for exploratory data analysisare fixed conditional likelihoods determined 

by  evaluating the residual error model at all 
for subject I.

POSTHOCs ineffective for exploratory data analysis

2) When one of two apparently correlated etas is also 
correlated with a covariate, a false eta-covariate 

This is a convex optimization problem that can 
be rapidly and reliably solved, even with very 

correlated with a covariate, a false eta-covariate 
correlation may be  induced in the other

3) Means of NPML estimated individual eta distributions 
may reflect true eta-eta and eta-covariate correlations 

be rapidly and reliably solved, even with very 
large candidate support sets, with a central 

dual algorithm.  The 
solution consists of at most N (# subjects) 

may reflect true eta-eta and eta-covariate correlations 
more accurately than parametric POSTHOCS , but 

4) A full NPML estimation procedure requires solution consists of at most N (# subjects) 
> 0 .  The remaining 

points associated with PJ = 0 are discarded.

4) A full NPML estimation procedure requires 
optimization over both probabilities and support 
point positions – simple NONMEM® NONP 
optimization over POSTHOC supports will inherit the 

If the starting set of candidate support points is 
very rich, (e.g. a high resolution grid over the 
random effects space), a single application of 

optimization over POSTHOC supports will inherit the 
poor exploratory characteristics of the parametric 
POSTHOCs.

5) NPML posterior individual means may also reveal random effects space), a single application of 
the primal dual algorithm is sufficient to obtain 
a near global optimum over both probabilities 
and support point positions (see fig. 3 above 

5) NPML posterior individual means may also reveal 
features such as bimodality in the population 
distribution that are hidden in parametric analyses.

and support point positions (see fig. 3 above 
right).  Alternatively, a sequential approach of 
solving on successively refined sparser grids 
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for exploratory data analysis.  It can be more 
resilient to distortions caused by shrinkage and 

the sparse data case. 


