How many bits of information did my study provide? Kullback-Leibler information gain, standard errors and shrinkage

Douglas J. Eleveld, PhD

Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Then Netherlands

Background and Objectives

Information theory concerns the quantification, storage, and communication of information. The key measure in information theory is entropy which can be expressed in the units of **bits**. The Kullback-Leibler divergence D_{κ} is a widely used measure in information theory. Many other quantities can be interpreted in terms of D_{κ} and it is often referred to as "information gain". Our objective was to explore measures of information gain from model estimation.

We evaluated the following properties for a information measure:

1) Units of *bits*, the natural unit of information 2) Increase proportionally with number of individuals 3) Increase with the number of observations per individual 4) Unchanged by non-informative individuals 5) Increase with decreasing observation error 6) Increase with decreasing parameter relative standard-error

Methods and Results

Methods

Simulations were performed using a onecompartment PK model with absorption:

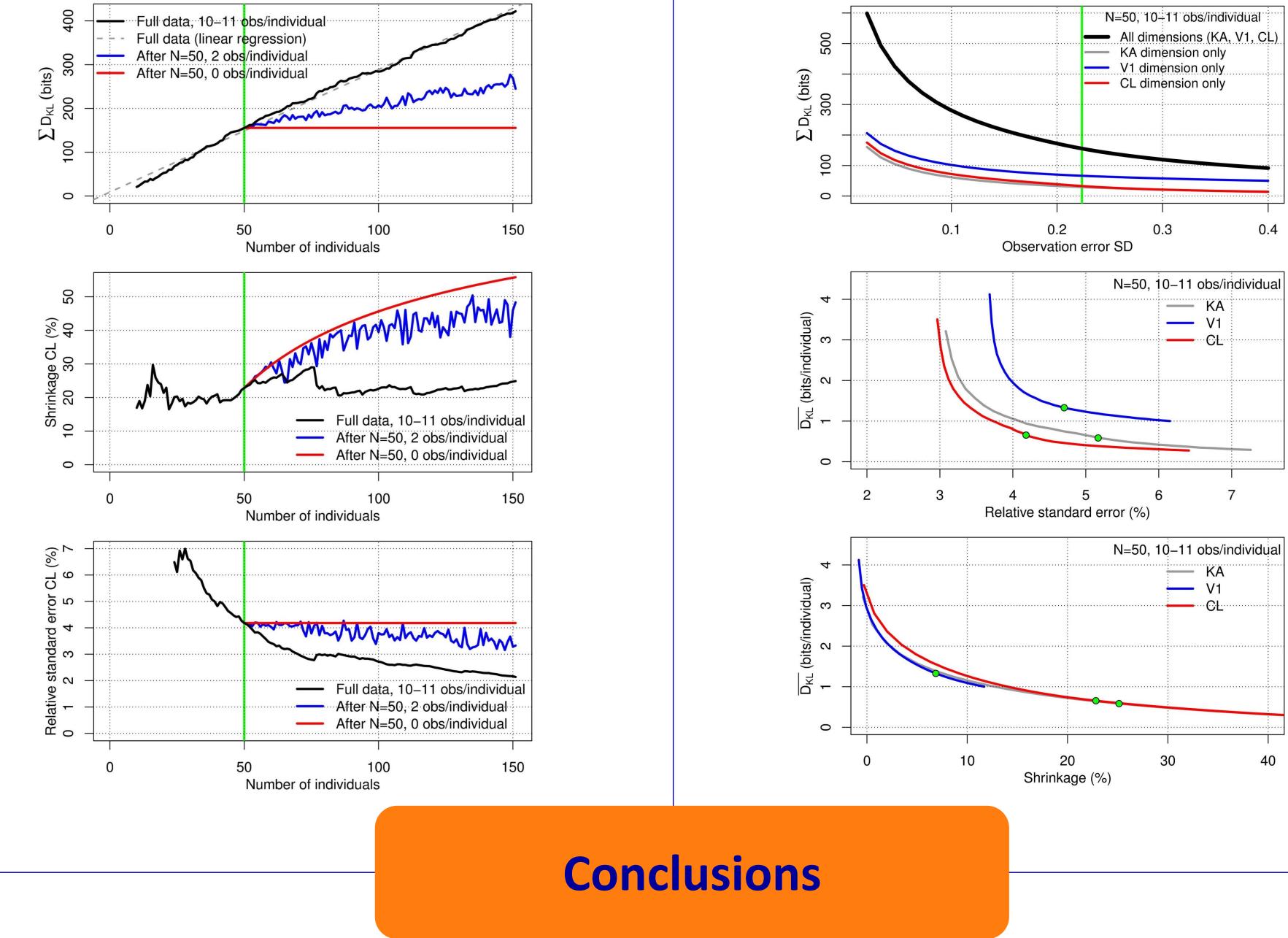
umcg

 $KA = 0.6 \cdot \left(WGT / 70kg\right)^{-0.25} \cdot \exp(\eta 1)$ $V1 = 20 \cdot (WGT / 70kg) \cdot \exp(\eta 2)$ $CL = 1 \cdot (WGT / 70kg)^{0.75} \cdot \exp(\eta 3)$ $IPRED = C_{V1} \cdot (1 + \varepsilon)$

$\eta 1$, $\eta 2$, $\eta 3$ inter-individual variance 0.05 ε observation error standard deviation 0.2236 Simulated WGT varied from 54.6-86.4 kg and there were 10-11 samples per individual

Varying number of individuals and data richness

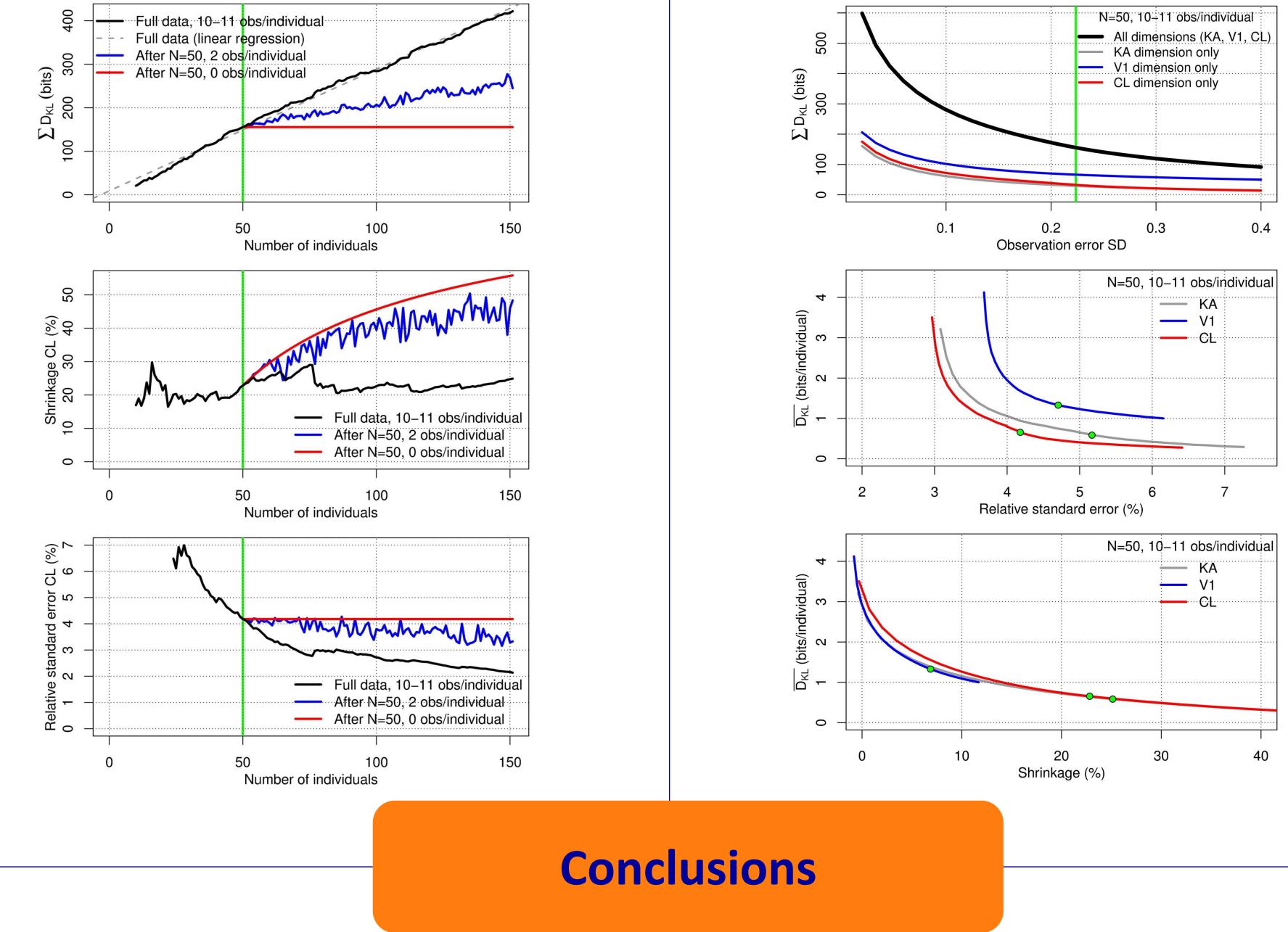
- For constant observations/individual, $\Sigma D_{\kappa l}$ is \bullet proportional to the number of individuals
- ΣD_{κ} increased with number of \bullet observations/individual
- ΣD_{κ} constant with non-informative individuals
- Shrinkage reflects average information content and creating interpretation difficulties with unequal-data-richness across individuals

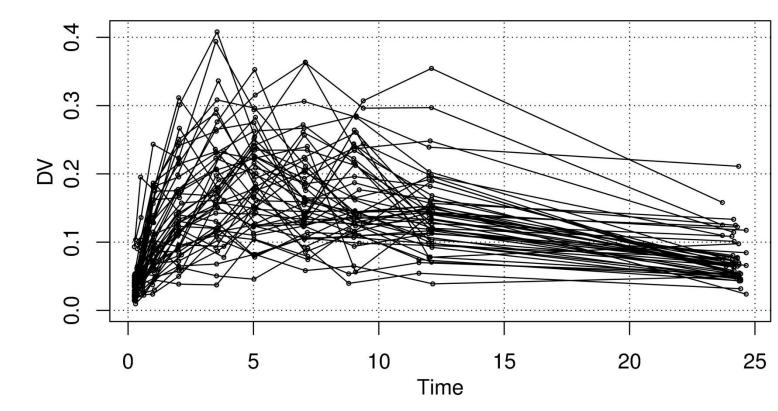


Varying observation error

For N=50 and 10-11 observation/individual

- ΣD_{κ_l} , and each dimension, decreases with observation error
- Relative standard error decreases with D_{κ} for each dimension
- In this equal-data-richness case, $\overline{D_{\kappa_l}}$ for each dimension seems related to η -shrinkage





Kullback-Leibler divergence

For multivariate normal distribution the $D_{\kappa}(NO||N1)$ of $NO(\mu 0, \Sigma 0)$ from $N1(\mu 1, \Sigma 1)$ is:

$$= \frac{1}{2} \left\{ tr \left(\Sigma_1^{-1} \cdot \Sigma_0 \right) + \left(\mu_1 - \mu_0 \right)^T \Sigma_1^{-1} \left(\mu_1 - \mu_0 \right) - k + \ln \left(\frac{|\Sigma_1|}{|\Sigma_0|} \right) \right\}$$

where NO to is the individual estimated distribution and N1 to represent the estimated population distribution. D_{κ} represents the information gained when one revises one's beliefs from the prior N1 to posterior N0. We sum $D_{\kappa I}$ over the individuals to obtain ΣD_{KL} . Dividing the equation above by *ln(2)* results in units of *bits*.

Simulations

- The number of individuals was N=10-150. Mixed data-richness was simulated by limiting the number of observations to 2 when N>50. Non-informative individuals had 0 observations
- Observation error ε was varied from 0.02-0.4.

Evaluating ΣD_{κ} satisfies the properties expected of a information measure. This allows a new quantification of information obtained by model estimation. For the reference PK model:

Parameter	η1 (KA)	η2 (V1)	η2 (CL)	Total
Estimated variance	0.0616	0.0793	0.0414	
Relative standard error (%)	5.17	4.70	4.18	
Shrinkage (%)	25.1	6.86	22.8	
ΣD _{KL} (bits)	29.2	66.4	32.7	155.5

Questions for future work

- How do we interpret the physical meaning of **bits**?
- How is the information obtained related to non-eta parameters?
- Does maximizing ΣD_{κ_l} lead to optimal study design?
- Is there a relationship (possibly approximate) between $\Sigma D_{\kappa l}$ and parameter certainty (i.e. standard errors)?
- Are $\Sigma D_{\kappa l}$ summaries useful to combine multiple studies of varying quality?