Population PK of midazolam from preterm neonates to adults: a maturation model

I. Ince^(1,2), S.N. de Wildt⁽¹⁾, M.Y.M. Peeters⁽³⁾, J. Burggraaf⁽⁴⁾, E. Jacqz-Aigrain⁽⁵⁾, D. Tibboel⁽¹⁾, M. Danhof⁽²⁾, C.A. Knibbe^(2,3)

¹ErasmusMC Sophia Children's Hospital, Department of Paediatric Surgery and Intensive Care, Rotterdam, The Netherlands, ²Leiden/Amsterdam Center For Drug Research, Division of Pharmacology, Leiden, The Netherlands, ³St. Antonius Hospital, Department of Clinical Pharmacy, Nieuwegein, The Netherlands, ⁴Centre for Human Drug Research, Leiden University, Leiden, the Netherlands, ⁵University Diderot, Department of Paediatric Pharmacology and Pharmacogenetics, Paris, France.

Background & Aim

In this analysis we aimed to develop a maturation model for the CYP3A4/5 enzyme activity using midazolam clearance as in vivo probe for preterm neonates from 26 weeks gestational age (GA) onwards to adults.

- [1] de Wildt SN et al., Clin Pharmacol Ther. 2001
- [1] de Wildt SN et al., Clin Pharmacol Ther. 2001 Dec;70(6):525-31
 [2] Jacqz-Aigrain E et al., Lancet. 1994 Sep 3;344(8923):646-50
 [3] Peeters, M.Y. et al. (2006) Anesthesiology 104 (3), 466-474
- [4] de Wildt, S.N. et al. (2003) Crit Care Med 31 (7), 1952-1958
- [5] de Wildt SN et al (2000) Clin Pharmacol Ther 67.104
- or. 104. [6] van Gerven JM et al., Br J Clin Pharmacol. 1997 Nov;44(5):487-93 [7] PAGE 19 (2010) Abstr 1819 [www.page-meeting.org/?abstract=1819]

Upon inclusion of preterm neonate datasets, BW proved a significant covariate for clearance. The influence of BW was best described using an allometric equation (Equation 1) with a BW-dependent maturational exponent (BWME). BWME gradually changed from 0.91 in preterm neonates to 0.50 in adults, with Coeff1 of 0.88 (7.6%) and exp2 of - 0.128 (30.8%) (Table 2). BW was also linearly correlated with V1, and in an allometric equation with V2 with an exponent of 0.78. Clearance was reduced by 93% in ICU patients.7 A 5.8 fold increase in V2 was estimated in patients after major craniofacial surgery.

$$CL_{TV} \times \left(\frac{BW_i}{BW_{mean}}\right)^{BWME}$$

$$BWME = Coeff_1 \times BW^{exp2}$$

Equation 1. Allometric equation with an exponent that varies with bodyweight. Cl_{TV} : typical value for clearance, BW : body weight, BWME : BW-dependent maturational exponent Coeff, : coefficient of the exponential function, exp, : additional exponent of the allometric function.

Table 2. Population parameter estimates of the PK model in children (Figure 1)

Parameter	Model fit		Bootstrap resu	
	Value	(CV%)	Value	(CV%)
Class-icupatients (L/min/kg ^{exp})	0.12	(4.8)	0.12	(11.5)
fClnon-icu patients (L/min/kgexp)	0.07	FIXED	0.07	FIXED
V1 (L/kg)	1.77	(25.8)	1.85	(19.3)
V2 (L/kg ^{enp3})	4.27	(7.6)	4.25	(8.3)
$fV_{2 \text{ children after elective major craniofacial surgery}}(L/kg^{\it equil})$	5.83	(23)	6.3	(17.7)
Q (L/min)	0.68	(18)	0.68	(19.2)
Coeff ₁ (coefficient of the exponential function (equation 1)	0.88	(7.6)	0.89	(12.1)
Exp2 (additional exponent of the allometric function (equation 1)	-0.128	(30.8)	-0.128	(43.5)
Exp3 (allowersic exponent of V2)	0.78	(8.9)	0.79	(8.7)
ω ² (Cl)	0.39	(17.4)	0.36	(18.0)
ω ² (V ₁)	0.62	(52)	0.57	(40.8)
ω ² (V ₂)	0.44	(32.9)	0.42	(33.0)
ω ² (V ₂ -V ₁)	0.47	(43.6)	0.43	(43.4)
σ ² reconstituted	0.12	(14.8)	0.11	(13.7)

Leiden /Amsterdam Center for Drug Research

Datase	2t	de Wildt SN et al. (2001) [1]	Jacqz-Aigrain E. et al. (1994) [2]	Peeters, M.Y. et al. (2006) [3]	de Wildt SN et al. (2003) [4]	de Wildt SN et al. (2000) [5]	van Gerven J.M.A. <i>et al.</i> (1997) [6]
Patient Pop	ulation	Preterm neonates	Preterm neonates with RDS syndrome*	Children after elective major craniofacial surgery	Pediatric intensive care patients	Oncology patients	Male adults
Indication midazolam s	n for edation	Sedation for invasive procedure in intensive care	Mechanical ventilation in intensive care	Postoperative sedation	Conscious sedation in intensive care	Sedation for invasive procedure	Healthy volunteers
Number of I	Patients	23	24	23	18	18	20
Midazolam Dose	median (range)	0.1 mg/kg iv infusion in 30 minutes	60 µg/kg/hr iv infusion If GA < 33w → after t > 24hr 30 µg/kg/hr	0.1 mg/kg iv loading dose, 0.05-0.2 mg/kg/hr infusion	0.1 mg/kg loading dose, 0.05-0.4 mg/kg/hr infusion	0.1 (0.03-0.53) mg/kg iv bolus dose	0.1 mg/kg iv infusion in 20 minutes
Postnatal Age (PNA)	median (range)	5 days (2.9-11)	0 days (0-1)	11.5 months (3.2 - 24.7)	38.5 months (0.03-203.5)	6.1 years (3.2 - 16.2)	24 years (20-31)
Gestational Age (GA)	median (range)	28.3 weeks (26-33.6)	32 weeks (26-37)	÷	-	-	-
Bodyweight in kg	median (range)	1.07 (0.77-1.6)	1.64 (0.96-3.7)	9.6 (5.1-12)	14 (2.8-60)	22.5 (12.6-60.1)	50.4 (33.5-81)
PELOD Score	median (range)	-	-	0 (0-10)	0 (0-22)	0 (0)	0 (0)
Mechanical ventilation	N/ N _{TOTAL}	12 / 23	24 / 24	2 / 23	15 / 18	0 / 18	0 / 20
Number of S	amples	141	63	198	233	82	336

Methods

Pharmacokinetic data after IV midazolam administration were obtained from 6 previously reported studies (Table 1). Population PK modeling was performed with a two compartment model using NONMEM v6.2. In a systematic covariate analysis, the influence of postnatal age, gestational age, postmenstrual age, body weight (BW) and PELOD score (organ failure) was investigated.

ETA V1

Body weight (Kg)

Figure 2. (1-4)

Covariate plots in final model, for bodyweight versus PK parameters CYP3A4/5 mediated clearance (CL), central (V1) volume of distrubution (1-2), and versus their ETA values (3-4).

Dotted lines: Population predicted post-hoc values of

- : icu treatment group
- : non-icu treatment group

Table 3. Legend for Figures 2 and 3

Observed Concentration vs Population Predicted Conce on In Final Mod

Conclusion & Perspectives

A maturation model for midazolam clearance from preterm neonates to adults has been developed for both ICU as well as non-ICU treatment patients, showing that CYP3A4/5 activity matures in (preterm) neonates up to 5-10 kg of body weight. Thereafter, maturation slows down resulting in minimal increase between 10 and 81 kg of body weight.

1.0 0.10 Body weight (Kg) ETA CL 4

Body weight (Kg)

CL(L/min)

1.

3.