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1. Overview: Why Stan?

• Support for and ODE model including any PK/PD model
• Population level random effects are more intuitive to im-

plement and interpret than traditional techniques
•More accurate uncertainty estimates leads to safer infer-

ence
• Prior information e.g. from previous studies or meta-

analysis can be readily included in any model
•More intuitive diagnostics means less statistics expertise

required
•Open source with a large, helpful community for answer-

ing questions

2. Setting up a model is as easy as entering an ODE,
then specifying an error distribution and a

population distribution

2.1 Specify an ODE
real[] dz_dt(real t, // time

real[] z, // system state
real[] theta) { // parameters

// set states
real A = z[1]; // mass in 1st compartment
real c = z[2]; // concentration in 2nd compartment

// set unknown parameters
real Ka = theta[1]; // absorption rate
real Cl = theta[2]; // clearance rate of drug
real V = theta[3]; // volume of blood

// specify differential equations
real dA_dt = -Ka*A;
real dc_dt = (1/V)*(Ka*A - (Cl/V)*(c*V));

return { dA_dt, dc_dt };
}

2.2 Specify the Data You Have
data {

int Nt; // number of unique measurement times
real ts[Nt]; // measurement times
real y_init; // initial drug dose
real<lower=0> y[Nt]; // concentrations

}

2.3 Specify the Parameters to Estimate
parameters {
real<lower = 0> theta[3]; // Ka,Cl,V
real<lower = 0> sigma; // measurement error

}

2.4 Specify Your Probabilistic Model
model {

// prior information or population level prior
theta[3] ∼ normal(5.1, 0.2); // V close to 5 liters

// measurement model
z[Nt,] = integrate_ode_rk45(dz_dt, ts, theta);
y ∼ lognormal(log(z[, 2]), sigma);

}

2.5 Simulate Synthetic Data from Your Model
generated quantities {
real y_rep[Nt];
for (n in 1:Nt) {
// generate data w/ the same noise distribution
y_rep[n] = lognormal_rng(log(z[n, 2]), sigma);

}
}

2.6 Extending to a Multi-Patient Population-
Level Model
model {
// set up model for each subject
for (n in 1:NumSubjects) {

// nth patient follows population level prior
theta[n,3] ∼ normal(mu_V, sigma_v);

// integrate ode for nth patient
z[n,Nt,] = integrate_ode_rk45(dz_dt, ts, theta[n]);
y[n] ∼ lognormal(log(z[n,, 2]), sigma);

}
}

Figure 1: Concentration of the drug Theophylline mea-
sured over time for 12 distinct subjects. Each color repre-
sents a unique subject.

3. Fitting models is done automatically with the
state-of-the-art NUTS sampler

Data is noisy, which means estimates are noisy! Stan not
only provides uncertainty intervals, but does so more ac-
curately than traditional methods such as asymptotic confi-
dence intervals and Metropolis sampling.

3.1 Efficiently Exploring the Parameter Space

Figure 2: Unlike asymptotic confidence estimates which
assume that the likelihood is Gaussian, NUTS sampling
makes no assumptions about the shape of the likelihood
function and is able to explore the entirety of parameter
space rather than being confined to the best-fitting Gaus-
sian. Furthermore, NUTS is much more efficient than its
predecessor Metropolis in that it provides nearly indepen-
dent samples, reducing inference time by orders of magni-
tude, especially for large problems.

3.2 Getting the Right Uncertainty Intervals

Figure 3: On simulated data where we know the true value
of parameters (red line), it is easy to see how commonly
used asymptotic estimates provided in traditional inference
software often underestimate the uncertainty inherent in pa-
rameter estimations. NUTS better represents the uncer-
tainty inherent in estimates, giving us more confidence in
applications where safety and worst-case scenarios are im-
portant to quantify

4. Posterior samples make interpreting fits intuitive

Using posterior samples we can intuitively understand the
estimated value of any unknown parameter we are trying to
estimate. As an example, if we wanted to know the prob-
ability a patient’s peak concentration level for a given dose
will reach a value greater than 11 g/L, we can simply check
the fraction of samples that were over 11, and this value
represents a probability.
mean(peak.conc.post.samples > 11)
> [1] 0.026

Figure 4: Posterior distributions for drug absorption rate
and peak concentration level estimated from Theophylline
data for a single patient. These histograms not only give us
an idea of what the value of any unknown parameters can
be, but they illustrate the uncertainty range for unknown pa-
rameters as well.

5. Generative Models allow us to easily simulate
data, making diagnostics intuitive

The generative modeling framework and Stan allow us to
simulate synthetic data from our model making model diag-
nostics intuitive. Furthermore, by the ability to describe our
data generating process allows us to simulate our model
under different conditions. For example, we can simulate
a subject’s concentration trajectory under different dosages
in a straight-forward manner. Stan also makes it easy to
simulate concentration profiles for patients who have no ob-
served data or very little data, by taking advantage of the
population model and the generative framework.

Figure 5: When simulations of our data seem to match the
true data (red line) this indicates that the model captures
the subtleties of the data and is thus a good fit.

Figure 6: With Stan, it is straight-forward to take estimated
parameters for a patient and use those estimates to gener-
ate concentration profiles for that same patient under a dif-
ferent dosage, all while taking in to account the uncertainty
in our estimates. In this case we simulate concentration lev-
els when the patients takes a dosage of 400mg as oppose
to the original dose of 320 that the experiment was based
off of. Compared to the observed concentrations (red line),
the higher dosage results in much higher concentrations.
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