
Rikard Nordgren (1), Sebastian Ueckert (1), Stella Belin (1), Gunnar Yngman (1), Simon Carter (1), Simon Buatois (2), João A. Abrantes (2), Andrew C. Hooker (1), Mats O. Karlsson (1)
(1) Department of Pharmacy, Uppsala University, Sweden (2) Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland

Pharmpy and assemblerr — Two Novel Tools to Simplify the Model
Building Process in NONMEM

[1] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2021.
[2] Robert J. Bauer. NONMEM Tutorial Part I: Description of Commands and Options, With Simple Examples of Population Analysis. CPT: Pharmacometrics & Systems Pharmacology, 8(8):525–537, 2019.
[3] Drake FL Van Rossum G. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA, 2009.

The development of pharmacometric nonlinear mixed effect models is a
complex, multi-step process that requires knowledge in multiple domains,
including pharmacology and statistics. The technical component, i.e. how to
implement and manipulate models, is an additional burden. In this work, we
present two novel open-source packages to decrease the technical hurdles
in the model building process; assemblerr for the generation of models from
predefined components, and Pharmpy for manipulating models and processing
of results. Both software are designed as standalone tools but are especially
powerful when used together.

assemblerr
assemblerr is an open-source R package [1] for constructing pharmacometric
models from scratch. It is intended to simplify the specification of
pharmacometric models and provides a mechanism to generate them in an
automatic way. With assemblerr, models are specified using R code which
assemblerr can render into a NONMEM [2] control stream (support for other
tools is planned).

Example code
In assemblerr, models are described via predefined components that are added
together in a similar manner to ggplot graphics. The package provides
components with different levels of abstraction, both high-level pharmacokinetic
(PK) building blocks such as an absorption transit compartment, and low-
level building blocks such as flows between compartments. Model tasks, e.g.
estimation, are defined via dedicated components. After defining the model, you
can check for potential issues in the model. In a final step, the defined model
and the requested tasks can be converted to NONMEM code using the render
function. As an example, using high-level building blocks, the following code
defines a simple PK model as well as some tasks, and renders them:
define a model
m <- pk_model() +

pk_absorption_fo() +
pk_distribution_1cmp() +
pk_elimination_linear() +
obs_additive(conc˜C["central"])

define estimation and output tasks
tsks <- tsk_estimation("foce") +

tsk_output("pars", variables = vars_prms())
check for potential issues and create NONMEM code
check(m)
render(model = m, tasks = tsks)

This snippet yields the following code:

$PROBLEM
$INPUT ID TIME DV AMT
$DATA data.csv IGNORE=@
$SUBROUTINES ADVAN2 TRANS2
$PK
MAT = THETA(1) * EXP(ETA(1))
VC = THETA(2) * EXP(ETA(2))
CL = THETA(3) * EXP(ETA(3))
KA = 1/MAT
V = VC
$ERROR

CONC = A(2)/VC
Y = CONC + EPS(1)
$ESTIMATION METHOD=COND MAXEVAL=999999
$TABLE MAT VC CL FILE=pars NOAPPEND NOPRINT
$THETA (0, 0.5, Inf) ; POP_MAT
$THETA (0, 100, Inf) ; POP_VC
$THETA (0, 50, Inf) ; POP_CL
$OMEGA 0.1 ; IIV_MAT
$OMEGA 0.1 ; IIV_VC
$OMEGA 0.1 ; IIV_CL
$SIGMA 1; RUV_ADD

Features

• Flexible assembly of models from predefined components: parameter
model, observation model, compartment, flow, algebraic relationship.

• Support for high-level components of PK models: absorption,
distribution, elimination.

• Automatic recognition and optimized code generation for linear ODEs
and ODEs with an analytic solution.

• Simple model task specification with tidyselect syntax for output
variable selection.

• Option to use mu-referencing for models.

Pharmpy
Pharmpy is an open-source Python package [3] for pharmacometric modeling.
The package can be used directly in Python, in R via the pharmr package
or from the command line interface. It has functionality ranging from reading
and manipulating model files/datasets to executing workflows and presenting
results. Pharmpy is intended to be useful to tool developers, methodological
researchers and modelers, and has different Application Programming Interface
(API) layers to cater for the different needs of the groups.

Model objectParser of input
language

P
a

ra
m

e
te

rs

R
a

n
d

o
m

v
a

ri
a

b
le

s

D
a
ta

s
e

t

D
if
fe

re
n
ti
a

l
e
q

u
a

ti
o

n
s

M
o

d
e

l
s
ta

te
m

e
n

ts

Low level API

High level API

Generate updated
model code

The main design principles of Pharmpy are modularity, so that parts of tools
can be reused independently, and tool agnosticism, so that multiple model
languages and tools for estimation and simulation of models can be used. At the
core of Pharmpy lies its abstraction for non-linear mixed effects models. Models
are internally separated into components. The parameters, random variables,
differential equations and model statements have their own classes with APIs
allowing for low level manipulation.

Example code
Continuing the assemblerr example, the NONMEM model can be read,
transformed by adding a peripheral compartment, and finally be run in
NONMEM. This can be done as a pipeline using the pharmr interface:

m <- read_model('path/to/model/run1.mod') %>%
add_peripheral_compartment() %>%
update_source() %>% # update NONMEM code
fit() # run NONMEM

The NONMEM code will now be updated accordingly:
...
$SUBROUTINES ADVAN4 TRANS4
...
$PK
VP1 = THETA(5)
QP1 = THETA(4)
...
KA = 1/MAT
V2 = VC
Q = QP1
V3 = VP1
...
$THETA (0, 50, Inf) ; POP_CL
$THETA (0,50.0) ; POP_QP1
$THETA (0,5.0) ; POP_VP1
...

After fitting the model, different NONMEM results such as OFV and parameter
estimates can be accessed from the model object.

Features

• Parsing of NONMEM model files (created manually or by using
assemblerr), dataset, and result files.

• Transformation of models (e.g. adding and removing compartments,
adding covariate effects, changing the IIV structure).

• Run NONMEM models directly from Python/R.
• Create and read in results from PsN tools (e.g. FREM, cdd, simeval)
in .json-format.

Availability
assemblerr is available on CRAN and can be installed using
install.packages("assemblerr"). More information on the package is
available here:

https://uupharmacometrics.github.io/assemblerr/

Pharmpy is available from the Python package index and can be installed
via pip install pharmpy-core. The Pharmpy webpage (with information
about pharmr as well) can be found here:

https://pharmpy.github.io/

Acknowledgments
This work was supported by F. Hoffmann-La Roche Ltd., Basel, Switzerland. A
special thanks to Dr. Emilie Schindler, Dr. Sylvie Retout and Dr. Valérie Cosson
for conducting testing and giving feedback.

https://uupharmacometrics.github.io/assemblerr/
https://pharmpy.github.io/

