Competing risks analysis of the Finnish diabetes prevention study

13 June 2019, PAGE conference

Moustafa M.A. Ibrahim1,2,3, Vanessa D. de Mello4, Matti Uusitupa4, Jaakko Tuomilehto5, Jaana Lindström5, Maria C. Kjellsson1, Mats O. Karlsson1

(1) Uppsala University, Sweden; (2) Helwan University, Egypt
(3) Pharmetheus, Sweden; (4) University of Eastern Finland, Finland
(5) National Institute for Health and Welfare, Finland
Survival analysis

- Clinical studies usually consider one primary event of interest (disease-related) in the presence of other non-disease related events.
 - When one event prevents another event from happening or being observed => ‘Competing risks’
 e.g. if a subject drops out (DO), later events are unobservable
 - If competing events are independent of each other, they are treated as independent censoring
Survival analysis

\[X = \min(T, U) \]

\(T = \text{Time to event of interest} \)

\(U = \text{Censoring time} \)

\[\lambda(t_i) = \frac{d_i \text{ (number of disease-related events at time } t_i)}{n_i \text{ (risk set: number of subjects known to survive just prior time } t_i)} \]

\[S(t) = \prod_{i: t_i \leq t} \left(1 - \frac{d_i}{n_i}\right) \]

\[S(t) = e^{-\int_0^t \lambda(x) \, dx} \]
Survival analysis (Key assumptions)

1) \(n_i \) is a random sample of the population at risk at time \(t_i \) for all \(t \), i.e. censoring is independent.

2) Outcome data \([X = \min(T, U)]\) is exact.

<table>
<thead>
<tr>
<th>(t_i)</th>
<th>(n_i)</th>
<th>(d_i)</th>
<th>(nd_i)</th>
<th>(\lambda(t_i))</th>
<th>(S(t_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>1</td>
<td>0</td>
<td>1/50</td>
<td>([1-(1/50)] \times 1 = 0.98)</td>
</tr>
<tr>
<td>5</td>
<td>49</td>
<td>0</td>
<td>1</td>
<td>0/49</td>
<td>([1-(0/49)] \times 0.98 = 0.98)</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
<td>1</td>
<td>0</td>
<td>1/48</td>
<td>([1-(1/48)] \times 0.98 = 0.96)</td>
</tr>
</tbody>
</table>

This implies that the risk of subjects with censored time do not differ from that of subjects still in \(n_i \).
Dependence between censoring and event of interest

if the risk of disease and drop-out are correlated

- Time of disease manifestation is unobservable in DO subjects
- $S()$ is inestimable from the data1
- Biased estimates of the cumulative probabilities2

1Tsiatis A, Proc Natl Acad Sci. 1975; 72: 20-22; 2Verduijn M et al., Nephrol Dial Transplant. 2010; 26: 56-61
Clinical status is only observed at finite time points e.g. at medical visits

Multiple events are possible within this interval

Biased estimates of the disease incidence\(^1,2\)

Event-free visit

Event-free visit

Diseased?

DO visit

Competing risks with interval-censored data

• Multi-state model1,2
 – Hypothesis testing
 – Account for competing risks
 – Account for interval-censoring, i.e. the probability of developing non-terminal events in the interval between the medical visits
 – Allow simultaneous estimation of covariate effects on the different competing risks

Finnish Diabetes Prevention Study (FDPS)

- Randomized controlled multicenter study carried out in Finland for 6 years with a follow-up of 10 years\(^1\)

Overweight, middle-aged subjects with impaired glucose tolerance

- Investigate the effects of lifestyle intervention

\(^1\)Tuomilehto J et al., N Engl J Med 2001; 344:1343–50
Finnish Diabetes Prevention Study (FDPS)

- Clinical status assessed at yearly medical visits using OGTT*
 - Subjects who developed diabetes mellitus (DM) were excluded from the study at the visit of diagnosis
 - Yearly OGTT => Insulin sensitivity (S_I) by 9 surrogate methods1
 - QUICKI, HOMA, Avignon, Matsuda, etc

1Patarrão RS et al., Rev Port Endocrinol Diabetes Metab 2014; 9(1): 65–73; *OGTT – Oral Glucose Tolerance Test
Finnish Diabetes Prevention Study (FDPS)
Finnish Diabetes Prevention Study (FDPS)

- Previously analyzed by Kaplan-Meier estimator to obtain the survival curve\(^1\)
 - Did not take interval-censoring into account
 - Regarded drop out as a non-informative (independent censoring)
 - Did not have access to follow-up data

\(^1\)Tuomilehto J et al., N Engl J Med 2001; 344:1343–50
Aims

- Develop a multi-state model for competing risks analysis of data from FDPS and its follow-up
- Use the model to investigate
 - covariate effects on the different competing risks
 - predictiveness of methods of S_i assessment for the onset of diabetes
Model building & assumptions

- Multi-state model
 - Hypothesis testing:
 - $\lambda_{H-D} = \lambda_{DO(H)-D}$
 ($\lambda_{15} = \lambda_{35}$)
 - $\lambda_{DM-D} = \lambda_{DO(DM)-D}$
 - $\lambda_{H-DM} = \lambda_{DO(H)-DO(DM)}$
 - $\lambda = $ Constant, Weibull, etc
Model building & assumptions

- Multi-state model
 - Covariates testing:
 - Base line covariates: No risk of selection/immortal bias.
 - Not the case for time-varying covariates
• Multi-state model

\[
\frac{dP_1}{dt} = -P_1 \cdot (\lambda_{12} + \lambda_{13} + \lambda_{15}) \\
\frac{dP_2}{dt} = -P_2 \cdot \lambda_{25} + P_1 \cdot \lambda_{12} \\
\frac{dP_3}{dt} = -P_3 \cdot \lambda_{34} - P_3 \cdot \lambda_{35} + P_1 \cdot \lambda_{13} \\
\frac{dP_4}{dt} = -P_4 \cdot \lambda_{45} + P_3 \cdot \lambda_{34} \\
\frac{dP_5}{dt} = P_1 \cdot \lambda_{15} + P_2 \cdot \lambda_{25} + P_3 \cdot \lambda_{35} + P_4 \cdot \lambda_{45}
\]
• Multi-state model
 – Stationary
 • $\lambda_{H-DO(H)}$ & $\lambda_{DO(H)-DO(DM)}$
 • $\text{COV}_{H-DO(H)} = f(\text{Intervention}, \text{BMI})$
 – Non-stationary
 • λ_{H-DM} & λ_{i-D}
 • $\text{COV}_{H-DM} = f(\text{Intervention}, \text{BMI}, \text{HbA1C}, S_1)$
 • λ_{i-D} followed Gompertz-Makeham formula
Multi-state model

- Hypothesis testing:
 - λ_{i-D} were indeed independent of DO
 - No significant difference between
 - λ_{H-D} & $\lambda_{DO(H)-D}$
 - λ_{DM-D} & $\lambda_{DO(DM)-D}$
• Multi-state model
 – Hypothesis testing:
 • DO was an informative process
 – $\lambda_{H-DM} \neq \lambda_{DO(H)-DO(DM)}$
 • After DO, subjects were at ~ 3.5 times lower risk of developing DM
 • Subjects in the intervention group
 – 2 times higher risk of DO
 – 1.5 times lower risk of DM
• Multi-state model
 - Hazard of dying 20% higher among patients
 • $\lambda_{H-D} = \alpha + \beta \cdot e^{k \cdot (\theta_{15, \text{scale}} \cdot \text{age})}$
 • $\lambda_{DM-D} = \alpha + \beta \cdot e^{k \cdot (\theta_{25, \text{scale}} \cdot \text{age})}$
 • $\lambda_{H-D} = \lambda_{DO(H)-D}$
 • $\lambda_{DM-D} = \lambda_{DO(DM)-D}$
• Multi-state model
 – Measurements of S_i
 • QUICKI, HOMA, Avignon
 – Effects of significant covariates at different combinations can be assessed
 • HbA$_{1c}$=7% \sim 2.5 times higher risk of DM than HbA$_{1c}$=6%
Results

<table>
<thead>
<tr>
<th>Control</th>
<th>Proportion of total subjects</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>Diabetes Mellitus</td>
<td>Drop out (Healthy)</td>
</tr>
<tr>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Proportion of total subjects</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>Diabetes Mellitus</td>
<td>Drop out (Healthy)</td>
</tr>
<tr>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>
• Thanks to follow up data, we knew that all DO subjects were healthy first:
 - allow DM manifestation in the interval between last healthy visit and the DO visit
• $\lambda_{14} = \lambda_{13} \cdot \lambda_{12}$
Conclusions

• Competing risks violates the standard survival analysis assumptions
• Interval censoring further complicates competing risks analysis
• Multi-state models:
 – Hypothesis testing & identifying influential assumptions
 – Describe the dependence of mechanisms leading to incomplete observations
 – Account for the occurrence probability of the non-terminal processes in the interval between visits
 – Allow simultaneous estimation of covariate effects on the different competing risks
 – extendable for PK/PD joint modeling and simulation of drugs, biomarkers and competing clinical outcomes
Acknowledgements

All members of the Pharmacometrics Group at Uppsala University, Sweden
Censoring is independent

- **Non-informative censoring** occurs if the distribution of censoring times U provides no information about the distribution of survival times T, and vice versa.
 - T with density $f()$ and survival $S()$;
 - U with density $y()$ and survival $Z()$

\[
L \propto \prod_{i=1}^{n} [f(x_i)]^{\delta_i} \cdot [S(x_i)]^{1-\delta_i}
\]
• Cause-specific hazard for k^{th} event:

 - The instantaneous risk of k^{th} event given that the subject survived all other events until t_i

 $$\lambda_k(t_i) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} P(t_i \leq T_k < t_i + \Delta t, K = k | T_k \geq t_i)$$

 $$S_k(t) = e^{(-\int_0^t \lambda_k(x) \, dx)}$$

Describes a hypothetical world where patients can have only k^{th} event

Assumes independence

Little use for clinical decisions in the real world
Censoring is dependent

- The cumulative incidence function \((C_k(t)) \):
 - The proportion of subjects who have \(k^{th} \) event, accounting for subjects failing from other events
 \[
 C_k(t) = \int_0^t S(x) \lambda_k(x) \, dx
 \]
 - Break down probabilities of failure
 - Calculate real world probabilities